Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Điều kiện. x ≠ -1
Phương trình tương đương
Lấy ln hai vế của , ta được
Suy ra x0 = 2 và P = 60.
Đáp án là A
Theo điều đủ để hàm số có cực trị thì x 0 là điểm cực tiểu của hàm số.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
\(I=\int\limits^{100}_0x\left(x-1\right)...\left(x-100\right)dx\)
Đặt \(100-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=100\\x=100\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_{100}\left(100-t\right)\left(99-t\right)...\left(1-t\right)\left(-t\right).\left(-dt\right)\)
\(I=\int\limits^0_{100}\left(-1\right)\left(t-100\right).\left(-1\right)\left(t-99\right)...\left(-1\right)\left(t-1\right)\left(-1\right)t\left(-dt\right)\) (101 số -1)
\(I=-\int\limits^0_{100}t\left(t-1\right)\left(t-2\right)...\left(t-100\right)\left(-dt\right)\)
\(I=-\int\limits^{100}_0t\left(t-1\right)\left(t-2\right)...\left(t-100\right)dt\)
\(I=-\int\limits^{100}_0x\left(x-1\right)\left(x-2\right)...\left(x-100\right)dx=-I\)
\(\Rightarrow2I=0\Rightarrow I=0\)
Chọn D.
Gọi
Phương trình tiếp tuyến của (C) tại A là:
Dấu “=” xảy ra khi
=> M(-2;0)
Suy ra
Đáp án D
Điểu kiện
Xét -6 < x < 4, khi đó áp dụng công thức ta có:
=> hàm số đã cho nghịch biến trên -6 < x ≤ 4
Vì vậy, hàm số đạt giá trị nhỏ nhất tại x0 = 4
đáp án 0
1001001000 * 0 = 0