
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi

Vì x là số dương nên ta Giả sử \(\hept{\begin{cases}x^2=a\\\frac{2}{x}=b\end{cases}}\) với a,b là hai số tự nhiên
Vậy \(x=\frac{2}{b}\Rightarrow x^2=\frac{4}{b^2}=a\Leftrightarrow4=ab^2\)
Do b là số tự nhiên nên \(\orbr{\begin{cases}b=1\Rightarrow a=4\\b=2\Rightarrow a=1\end{cases}}\) vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

ax^2y-2xy^2 + 3xy -2x^3y -7x+11(*)
=ax^2y -2xy^2 + xy(3-2x^2) -7x+1
Để đa thức có bậc 4 thì 3> 2x^2 hoặc 3< 2x^2
=> x< hoặc =1 hoặc x> hoặc =2
từ (*) ta phân tích thêm được:
x^2y(a-2x) -2x-2xy^2 + 3x3xy -7x+11
=> a> 2x hoặc a< 2x
Giả sử a=2 => x< 1 hoặc x>1( loại)
Giả sử a=3 => x< hơn hoặc=1 hoặc x> hơn hoặc=2 (thỏa mãn)
Vậy a=3
p=3
TH1: p=3
p+10=3+10=13; p+2=3+2=5
=>Nhận
TH2: p=3k+1
\(p+2=3k+1+2=3k+3=3\left(k+1\right)⋮3\)
=>Loại
TH3: p=3k+2
\(p+10=3k+2+10=3k+12=3\left(k+4\right)⋮3\)
=>Loại
vậy: p=3