K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

a/ \(\left(x^2-2x+2\right)\left(x^2-2x+5\right)=40\)

Đặt: \(x^2-2x+1=t\left(t\ge0\right)\)

\(pt\Leftrightarrow\left(t+1\right)\left(t+4\right)=40\)

\(\Leftrightarrow t^2+5t-36=0\)

\(\Leftrightarrow t^2-4t+9t-36=0\)

\(\Leftrightarrow t\left(t-4\right)+9\left(t-4\right)=0\)

\(\Leftrightarrow\left(t-4\right)\left(t+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-4=0\\t+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\left(tm\right)\\t=-9\left(ktm\right)\end{matrix}\right.\)

Ta có: t = 4 => \(x^2-2x+1=4\)

\(\Leftrightarrow\left(x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy..............

1 tháng 8 2017

\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)

\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2017

Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d

b) \(2x^4+5x^3+x^2+5x+2=0\)

Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:

\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)

\(\Leftrightarrow2y^2+5y-3=0\)

PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3

Với y=1/2 thì không tìm được x

Với y=-3 thì tìm được 2 nghiệm, tự giải

a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)

\(\Leftrightarrow10x^2+13x+20=0\)

\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)

Do đó: Phương trình vô nghiệm

b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)

=>8x=2

hay x=1/4

c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)

\(\Leftrightarrow x^2-5x-5=0\)

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)

a: =>|x-3|=4-x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(4-x-x+3\right)\left(4-x+x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(7-2x\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{7}{2}\)

b: =>|x-5|=3-19x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(x-5-3+19x\right)\left(x-5+3-19x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(20x-8\right)\left(-18x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{1}{9}\right\}\)

c: =>\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

=>căn x-3=0

=>x=3

30 tháng 7 2018

\(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=9\\2x-3=9\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=6\\x=10\end{matrix}\right.\)

Vậy \(x=\left\{3,5;6;10\right\}\)

d: Sửa đề: \(\left(4x-5\right)^2\cdot\left(2x-3\right)\left(x-1\right)=9\)

image

a: \(\Leftrightarrow\left(2x^2+x\right)^2-3\left(2x^2+x\right)-\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)\left(2x^2+x-3\right)-\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow\left(2x^2+x-3\right)\left(2x^2+x-1\right)=0\)

\(\Leftrightarrow\left(2x^2+3x-2x-3\right)\left(2x^2+2x-x-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};1;-1;\dfrac{1}{2}\right\}\)

1: =>x+1=5

=>x=4

2: \(\Leftrightarrow\left|x-5\right|=2x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+2-x+5\right)\left(2x+2+x-5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+7\right)\left(3x-3\right)=0\end{matrix}\right.\Leftrightarrow x=1\)

3: \(\Leftrightarrow\sqrt{3+x}\left(\sqrt{3-x}+1\right)=0\)

=>x+3=0

=>x=-3