\(\alpha\), chứng minh \(4\sin^3\alpha-4\sin^2\a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

vì mình không vẽ được hình nên các bạn vẽ hình của bạn nhé 

đặt tên  : tam giác ABC, AB= a , AC= b , GÓC BAC là \(\alpha\) , kẻ BH  vuông góc với AC 

tam giác ABH vuông tại H   \(\Rightarrow\)   \(\sin\alpha\) = \(\frac{BH}{AB}\)  \(\Rightarrow\)     BH = sin\(\alpha\).AB     

có   \(s_{ABC}\) = \(\frac{1}{2}BH.AC\) 

MÀ BH = sin \(\alpha\) . AB     \(\Rightarrow\)   S  \(_{ABC}\) =\(\frac{1}{2}sin\alpha.AB.AC\) = \(\frac{1}{2}a.b.sin\alpha\) \(\Rightarrow\)đpcm

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)

25 tháng 12 2019

éo biết 

16 tháng 1 2022

Có hình vẽ :  A B C D H K o

Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)

mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)

=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)

Khi 2 đường chéo vuông góc với nhau thì 

\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)

hay \(sin\alpha=1\)

Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm)