Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 5 đơn thức:
\(2x^2y^3\); \(3x^3y^4\); \(x^5y^6\); \(4xy^2\); \(5x^7y\)
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
VD: \(2x^2y^3z^4\) và \(\dfrac{1}{2}x^2y^3z^4\)
3. Quy tắc cộng, trừ hai đơn thức đồng dạng:
Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
4. Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó.
2.Định nghĩa: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
VD: 2x2y3 và -52y3
3.Quy tắc: Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
4.Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức P(x).
a) \(xy^2\): hệ số là 1; bậc là 3.
\(5x^3y^{ }\) : hệ số là 5; bậc là 4.
\(4x^2y^3\): hệ số là 4; bậc là 5.
\(2x^6y^{10}\) : hệ số là 2; bậc là 16.
\(3x^7y^5\) : hệ số là 3; bậc là 12.
b) Hai đơn thức đồng dạng là hai đơn thức có hệ số khác không và có cùng phần biến.
VD: \(xy^2\) và \(\dfrac{1}{2}xy^2\)
\(3x^2y^2\) và \(\dfrac{2}{3}x^2y^2\) ...
c) Quy tắc: Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
d) Đa thức là một đơn thức hoặc một tổng của hai hay nhiều đơn thức. Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.
\(2x^2y^3z^4+3x^3y^2+\dfrac{1}{2}x^6y^7\)
=> Bậc của đa thức là 7.
e) A(x) = \(10x^5+4x^4+3x^3+5x^2+\left(-1\right)\)
f) Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức P(x).
Có j sai thì bn cho mk xin ý kiến nha, đúng thì tick giúp mk nha! Chúc bn học tốt!
Ta có : \(A\left(x\right)=2x+6\)
Vì x = -3 là nghiệm của đa thức trên nên thay x = -3 vào đa thức trên ta được :
\(-6+6=0\)* đúng *
Vậy x = -3 là nghiệm đa thức trên
Ta cộng (trừ) 2 hệ số cho nhau và giữ nguyên phần biến.
VD:6x2+3x2=(6+3)x2=9x2
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...
3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.
4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.
Câu 1 mình không biết.
Câu 1:
2x^3y^2
3x^6y^3
4x^5y^9
6x^8y^3
7x^4y^8
Câu 2:
Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến
VD:
2xyz^3 và 3xyz^3
Câu 3:
Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số
Câu 4:
Số a được gọi là nghiệm của đa thức khi
Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)