\(T=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}-\sqrt{5}\)

2....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.

cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2

S = h * (a+b)1/2

Trong đó

a: Cạnh đáy 1

b: Cạnh đáy 2

h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)

Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:

S(ABCD) = 7 * (8+13)/2 = 73.5

cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3

Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:

S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

23 tháng 7 2018

I don't now

...............

.................

.

13 tháng 10 2017

Rút câu dễ nhất :))

\(T=\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}-\sqrt{5}\)

Đặt \(K=\)\(\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)

\(=>K^2=\)\((\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}})^2\)

\(=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4-\sqrt{10+2\sqrt{5}}\right)\left(4+\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

\(=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}\)

\(=8+2\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\left(\sqrt{5}-1\right)\left(\sqrt{5}>1\right)\)

\(=>K=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

\(=>T=\sqrt{5}+1-\sqrt{5}=1\)

13 tháng 10 2017

Bt làm câu 2 nhưng nhác đánh máy wa , còn câu 3 thì bó tay

thánh nào giúp tui CÂU 3 với Nguyễn Huy Tú

Toshiro Kiyoshisoyeon_Tiểubàng giảiAkai HarumaNguyễn Huy ThắngPhương AnÁi Hân NgôNguyễn Thanh HằngHung nguyenFairy TailĐời về cơ bản là buồn... cười!!!Linh_Windy,...

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Lời giải:

Ta có:
\(A-B=(\sqrt{2016}-\sqrt{2014})+(\sqrt{2017}-\sqrt{2015})+(\sqrt{2018}-\sqrt{2022})\)

\(=\frac{2}{\sqrt{2016}+\sqrt{2014}}+\frac{2}{\sqrt{2017}+\sqrt{2015}}-\frac{4}{\sqrt{2018}+\sqrt{2022}}\)

Dễ thấy:

\(0< \sqrt{2016}+\sqrt{2014}< \sqrt{2018}+\sqrt{2022}; 0< \sqrt{2017}+\sqrt{2015}< \sqrt{2018}+\sqrt{2022}\)

\(\Rightarrow \frac{1}{\sqrt{2016}+\sqrt{2014}}>\frac{1}{\sqrt{2018}+\sqrt{2022}};\frac{1}{\sqrt{2017}+\sqrt{2015}}>\frac{1}{\sqrt{2018}+\sqrt{2022}}\)

\(\Rightarrow A-B=2\left(\frac{1}{\sqrt{2016}+\sqrt{2014}}-\frac{1}{\sqrt{2018}+\sqrt{2022}}+\frac{1}{\sqrt{2017}+\sqrt{2015}}-\frac{1}{\sqrt{2018}+\sqrt{2022}}\right)>0\)

\(\Rightarrow A>B\)

giúp vs tth Trần Thanh Phương Nguyễn Văn Đạt Nguyễn Việt Lâm Akai Haruma

19 tháng 9 2019

a) \(\sqrt{2017}-2\sqrt{2016}=\sqrt{2017}-\sqrt{8064}< 0< \sqrt{2016}\)

b) \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=8=\sqrt{64}>\sqrt{61}\)

c) \(\left(\sqrt{2016}+\sqrt{2014}\right)^2=4030+\sqrt{2014.2016}\)

\(\left(2\sqrt{2015}^2\right)=4030+\sqrt{2015.2015}\)

C/m được: \(\sqrt{2014.2016}< \sqrt{2015.2015}\)

\(\Rightarrow\left(\sqrt{2016}+\sqrt{2014}\right)^2< \left(2\sqrt{2015}\right)^2\)

\(\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)

d) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=7=8-1=\sqrt{64}-1< \sqrt{65}-1\)

7 tháng 8 2018

1/ Tính: \(A=\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{10}+1\right)^2}}{2\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}+\sqrt{\left(2\sqrt{2}+2\right)^2}}=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}=\dfrac{2\sqrt{2}-1}{6\sqrt{2}-3}=\dfrac{2\sqrt{2}-1}{3\left(2\sqrt{2}-1\right)}=\dfrac{1}{3}\)

7 tháng 8 2018

\(B=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}-2\sqrt{2}-2\sqrt{3}+\sqrt{6}-\sqrt{6}-3+2\sqrt{2}+2\sqrt{2}+2\sqrt{3}-\sqrt{6}-\sqrt{6}-3}{2-\left(\sqrt{2}+\sqrt{3}\right)^2}=\dfrac{4\sqrt{2}-2\sqrt{6}-6}{2-2-3-2\sqrt{6}}=\dfrac{2\left(2\sqrt{2}-\sqrt{6}-3\right)}{-3-2\sqrt{6}}\)

7 tháng 8 2017

~ ~ ~

\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\)

\(=\sqrt{\dfrac{37}{4}-\sqrt{\left(3\sqrt{5}+2\right)^2}}\)

\(=\sqrt{\dfrac{29}{4}-3\sqrt{5}}\)

\(=\sqrt{\dfrac{29-12\sqrt{5}}{4}}\)

\(=\sqrt{\dfrac{\left(2\sqrt{5}-3\right)^2}{4}}\)

\(=\dfrac{\sqrt{5}}{2}-\dfrac{3}{4}\)

\(=\dfrac{1}{2}\left(\sqrt{5}-\dfrac{3}{2}\right)\)

\(>\sqrt{5}-\dfrac{3}{2}=B\)

~ ~ ~

\(C=\dfrac{16\sqrt{36}-20\sqrt{48}+10\sqrt{3}}{\sqrt{12}}\)

\(=\dfrac{96-80\sqrt{3}+10\sqrt{3}}{\sqrt{12}}\)

\(=\dfrac{96-70\sqrt{3}}{2\sqrt{3}}\)

\(=16\sqrt{3}-35\)

\(>16\sqrt{3}-36=B\)

~ ~ ~

8 tháng 8 2017

Cau A sao sao ak ban oi

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)