\(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

trả lòi bằng 1  tick minh nha

18 tháng 4 2016

2) 1\26+1\27+1\28+........+1\50=1+1\2+1\3+......+1\50 -( 1+1\2+1\3+.....+1\25)=1+1\2+1\3+....+1\50-2.(1\2+1\4+1\6+....+1\50)=1-1\2+1\3-1\4+.....+1\49-1\50=vế phải(đpcm)

31 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{60}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\left(đpcm\right)\)

Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 nhé !

Bài 1:

Xét vế phải :

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Đẳng thức được chứng tỏ là đúng

Bài 2 :

Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)

Rõ ràng \(A< A'\)

SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)

Nên \(A< \frac{1}{50}=0,02\)

Chúc bạn học tốt ( -_- )

15 tháng 5 2016

\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(< \frac{1}{26}+\frac{1}{26}+\frac{1}{26}+...+\frac{1}{26}+\frac{1}{26}\)
\(=\frac{25}{26}< 1\)(sai với đề bài)

5 tháng 9 2016

Ta biến đổi vế phải : 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\\ \)\(\\ =\left(1+\frac{1}{3}+\frac{1}{5}+........+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+.....+\frac{1}{50}\right)\\ =\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{25}\right)\\ =\frac{1}{26}+\frac{1}{27}+.....+\frac{1}{50}\)

Vậy \(\frac{1}{26}+\frac{1}{27}+.....+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

5 tháng 9 2016

Ta có

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)

=> \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\) ( đpcm )

30 tháng 4 2018

Đương nhiên là a<b rồi,vì A thuộc B mà

18 tháng 4 2019

ChoA=1/26+1/27+1/28+..  +1/49, B=1-1/2+1/3-1/4+... +1/49-1/50

5 tháng 4 2016

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{8}\right)-\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)