Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, 8.( -5 ).( -4 ).2
= [ 8.2 ].[( -5 ).(-4 ]
= 16.20
= 320
b, \(1\frac{3}{7}+\frac{-1}{3}+2\frac{4}{7}\)
\(=\frac{10}{7}+\frac{-1}{3}+\frac{18}{7}\)
\(=\frac{11}{3}\)
c, \(\frac{8}{5}.\frac{2}{3}+\frac{-5.5}{3.5}\)
\(=\frac{8}{3}+\frac{-5}{3}\)
\(=\frac{3}{3}=1\)
d, \(\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}.\left(-2\right)^2\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{16}.4\)
\(=\frac{55}{56}-\frac{3}{4}\)
\(=\frac{13}{56}\)
Câu 2 :
a, 2x + 10 = 16
2x = 16 + 10
2x = 26
x = 26 : 2
x = 13
b, \(x-\frac{1}{3}=\frac{5}{4}\)
\(x=\frac{5}{4}+\frac{1}{3}\)
\(x=\frac{19}{12}\)
c, \(2x+3\frac{1}{3}=7\frac{1}{3}\)
\(2x+\frac{10}{3}=\frac{22}{3}\)
\(2x=\frac{22}{3}-\frac{10}{3}\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
d, \(\left(\frac{2}{11}+\frac{1}{3}\right)x=\left(\frac{1}{7}-\frac{1}{8}\right).56\)
\(\frac{17}{33}x=1\)
\(x=1-\frac{17}{33}\)
\(x=\frac{16}{33}\)
A = 1 + 2 + 3 + ... + 2018
= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )
= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )
= 2019 x 1009 = 2037171
B = 1 + 3 + 5 + ... + 2017
= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009
= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)
= 2018 x 504 + 1009 = 1018081
Còn lại làm giống ý trên .
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left[2+2^2+...+2^{2019}\right]-\left[1+2+2^2+...+2^{2018}\right]\)
\(A=2^{2019}-1\)
#)Giải :
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+2^4+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(B=3+3^2+3^3+...+3^{2017}\)
\(3B=3^2+3^3+3^4+...+3^{2018}\)
\(3B-B=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2B=3^{2018}-3\)
\(B=\frac{3^{2018}-3}{2}\)
2
\(S1=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(S1=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{51}{102}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\frac{25}{51}\)
\(S1=\frac{25}{102}\)