K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2015

1.

   x+\(\frac{9-5}{5\times9}+\frac{13-9}{9\times13}+.......+\frac{45-41}{41\times45}\)

   x+\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{45}\)   

   x+\(\frac{1}{5}-\frac{1}{9}\)

   x+\(\frac{4}{45}=\frac{-37}{45}\)

  x =\(\frac{-41}{45}\)

18 tháng 3 2018

Mk sẽ giải từng câu :) 

Bài 1 : 

Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)

\(\Rightarrow\)\(2⋮d\)

\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~ 

18 tháng 3 2018

1. Gọi d = ƯCLN (2n+2,6n+5)

=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d

Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d

                     => 6n + 6 - 6n - 5 chia hết cho d

                     => 1 chia hết cho d

                    => d =1

=>  ƯCLN (2n+2,6n+5) = 1

 Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản

2. Ta có:

B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{70}\))

B = 27/35

\(\frac{27}{35}< 1\)

=> B < 1

3.      x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

         x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)

         x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)

         x + \(\frac{8}{45}=\frac{-37}{45}\)

                      x = \(\frac{-37}{45}-\frac{8}{45}\)

                      x = -1

6 tháng 6 2019

\(x+\frac{3}{5.9}+\frac{3}{9.13}+\frac{3}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)

\(\Leftrightarrow x+3\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\right)=-\frac{37}{45}\)

\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=-\frac{37}{45}\)

\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)

\(\Leftrightarrow x+\frac{3}{4}.\frac{8}{45}=-\frac{37}{45}\)

\(\Leftrightarrow x+\frac{2}{15}=-\frac{37}{45}\)

\(\Leftrightarrow x=-\frac{43}{45}\)

9 tháng 4 2015

=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)

=>S= 1- 1/(n+3)

=>S + 1/(n+3) = 1

=>S<1

23 tháng 3 2018

theo đề bài ta có:

\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)

\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{-37}{45}\)

\(x+\frac{8}{45}=\frac{-37}{45}\)

\(x=\frac{-37}{45}-\frac{8}{45}\)

\(x=\frac{-45}{45}=1\)

23 tháng 3 2018

đặt A=4/5.9+4/9.13+4/13.17+...+4/41.45

=1/5-1/9+1/9-1/13+1/13-1/17+...+1/41-1/45

=1/5-1/45

=8/45

suy ra x+8/45=-37/45

suy ra x=-1

9 tháng 1 2015
  • S = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

  • S = \(1-\frac{1}{n+3}\)

\(\Rightarrow\) S < 1 ( đpcm )

 

 

9 tháng 4 2017

=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)\(\frac{1}{7}\)) +(\(\frac{1}{7}\)\(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)\(\frac{1}{n+3}\))

=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)\(\frac{1}{7}\)\(\frac{1}{7}\)-  \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)-  \(\frac{1}{n+3}\)

=> S = 1 - \(\frac{1}{n+3}\)

vậy S = 1-  \(\frac{1}{n+3}\)

tung từng vế một thôi

bạn nhác quá éo chịu suy nghĩ

bài này dễ vl

13 tháng 5 2017

Bài 1:

a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)

\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)

\(\frac{1}{5x+6}=\frac{1}{2011}\)

=> 5x + 6 = 2011

    5x = 2011 - 6

    5x = 2005

    x = 2005 : 5

    x = 401

b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)

\(\frac{7}{x}=\frac{7}{15}\)

=> x = 15

c, ghi lại đề

d, ghi lại đề

Bài 2:

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

28 tháng 2 2018

\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)

\(=1-\frac{1}{n+3}\)

Ta có :

\(\frac{1}{n+3}>0\)

\(\Leftrightarrow-\frac{1}{n+3}< 0\)

\(\Leftrightarrow1-\frac{1}{n+3}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

28 tháng 2 2018

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)

 \(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}\)

\(S=\frac{n+2}{n+3}\)

Vi \(n\inℕ^∗\)nên \(n+2< n+3\)

DO đó\(\frac{n+2}{n+3}< 1\)

Vậy S <1

12 tháng 4 2019

Ta có:

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{n+3}\)

\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)

\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)