Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)
\(B=\dfrac{1}{2018}\)
2)a)\(x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
3)\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)
Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)
\(g\left(x\right)=-x^{101}+f\left(x\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)
Tại x=0 thì f(x)-g(x)=0
Tại x=1 thì f(x)-g(x)=1
Bài 1:
a) \(A=-3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
\(A=-3+\frac{1}{1+\frac{1}{\frac{4}{3}}}\)
\(A=-3+\frac{1}{1+\frac{3}{4}}\)
\(A=-3+\frac{1}{\frac{7}{4}}\)
\(A=-3+\frac{4}{7}=-\frac{17}{7}\)
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
a) \(\left|2,5-x\right|-1,3=0\)
th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)
th2: \(2,5-x< 0\Leftrightarrow x>2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)
vậy \(x=1,2;x=3,8\)
b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)
c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)
th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)
vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)
d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)
th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)
vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)
e) ta có : \(\left|x-1,5\right|\ge0\forall x\) và \(\left|2,5-x\right|\ge0\forall x\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm
1,
a, \(\left(x-\dfrac{1}{7}\right)^4=\left(x-\dfrac{1}{7}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{7}\right)^4-\left(x-\dfrac{1}{7}\right)^2=0\)
\(\Leftrightarrow\left[\left(x-\dfrac{1}{7}\right)^2+x-\dfrac{1}{7}\right]\left[\left(x-\dfrac{1}{7}\right)^2-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x+x-\dfrac{1}{7}\right]\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left(x^2+\dfrac{5}{7}x-\dfrac{6}{49}\right)\left(x^2-\dfrac{9}{7}x+\dfrac{8}{49}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\dfrac{5}{7}x-\dfrac{6}{49}=0\\x^2-\dfrac{9}{7}x+\dfrac{8}{49}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)
Vậy...
b, \(\left|x+6,4\right|+\left|x+2,5\right|+\left|x+8,1\right|=4x\)
\(\Leftrightarrow x+6,4+x+2,5+x+8,1=4x\) với mọi x
\(\Leftrightarrow x+x+x-4x=-8,1-2,5-6,4\)
\(\Leftrightarrow-x=-17\)
\(\Leftrightarrow x=17\)
Vậy...