Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Leftrightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Leftrightarrow x=11\)
b,\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Leftrightarrow\frac{1}{7}x-\frac{2}{7}=0\)hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\)hoặc \(\frac{1}{3}x+\frac{4}{3}=0\)
+) \(\frac{1}{7}x-\frac{2}{7}=0\Leftrightarrow\frac{1}{7}x=\frac{2}{7}\Leftrightarrow x=2\)
+)\(-\frac{1}{5}x+\frac{3}{5}=0\Leftrightarrow-\frac{1}{5}x=-\frac{3}{5}\Leftrightarrow x=3\)
+)\(\frac{1}{3}x+\frac{4}{3}=0\Leftrightarrow\frac{1}{3}x=-\frac{4}{3}\Leftrightarrow x=-4\)
c, \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{8}{9}\)
a/ \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Rightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Rightarrow x=11\)
b/ \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{1}{7}x=\frac{2}{7}\Rightarrow x=2\)
hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow-\frac{1}{5}x=-\frac{3}{5}\Rightarrow x=3\)
hoặc \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{1}{3}x=-\frac{4}{3}\Rightarrow x=-4\)
Vậy x = 2, x = 3, x = -4
c/ \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x=\frac{4}{9}\Rightarrow x=\frac{8}{9}\)
Vậy x = 8/9
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
\(a,x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(b,\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
\(c,\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow x=1}\)
\(d,-12\left(x-5\right)+7\left(3-x\right)=15\)
\(-12x+60+21-7x=15\)
\(-19x+81=15\)
\(-19x=15-81\)
\(-19x=-66\)
\(x=\frac{66}{19}\)
\(e,30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(30x+60-6x+30-24x=100\)
\(0x+90=100\)
\(0x=10\) ( vô lí )
=> không có giá trị x nào thõa mãn
a) x(x + 3) = 0
=> \(\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
Mà x < x + 3
=> x = 0
b)( x - 2 )( 5 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\5-x=0\Rightarrow x=5\end{cases}}\)
=> \(x\in\left\{2,5\right\}\)
c) ( x - 1 )( x2 + 1 ) = 0
=> \(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\x^2+1=0\Rightarrow x^2=-1\end{cases}}\)
Vì x2 không thể bằng -1 => x = 1
d)-12 ( x - 5 ) + 7 ( 3 - x ) = 15
=> -12x - (-60) + 21 - 7x = 15
=> -12x + 60 + 21 + (-7x) = 15
=>[-12x + (-7x)] + 81 = 15
=> -19x = -66
=> \(x\in\varphi\)
a) l 3x + 1l = 15
=>\(\hept{\begin{cases}3x+1=15\\3x+1=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=\left(15-1\right):3=\frac{14}{3}\\x=\left(-15-1\right):3=\frac{-16}{3}\end{cases}}\)
a, |3x+1|=15
=>3x+1=15 hoặc -15
- Với 3x+1=15
=>3x=14
=>x=14/3
- Với 3x+1=-15
=>3x=-16
=>x=-16/3
b, (6x+12).(x-2)=0
=>6x+12=0 hoặc x-2=0
=>x=-2 hoặc x=2
c, 5.(x-3)+4=2(x+1)+7
=>5x-15+4=2x+2+7
=>5x-11=2x+9
=>3x=20
=>x=20/3
d chịu
a) 3x - 2 = 0 => 3x = 2 => x = 2/3
b) 2x - 1 = 0 => 2x = 1 => x = 1/2
c) 5 ( 4+2x) = 8+5x
<=> 20 + 10x = 8 + 5x
<=> 10x - 5x = 8 - 20
<=> 5x = -12
x = -12/5
d) \(\frac{1}{2}+\frac{3}{4}x=6-\frac{4}{5}x\)
\(\frac{3}{4}x+\frac{4}{5}x=6-\frac{1}{2}\)
\(\frac{31}{20}x=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{31}{20}=\frac{110}{31}\)
e) 3 + 2x = 4 - 8x
<=> 2x + 8x = 4 - 3
10 x = 1
x = 1/10
f \(5+\frac{1}{2}\left(x+5\right)=3\)
\(\frac{1}{2}\left(x+5\right)=3-5=-2\)
\(x+5=-2:\frac{1}{2}=-4\)
\(x=-4-5=1\)
Vậy ......
a/ \(13x-1=10x+5\)
\(\Rightarrow13x-10x=5+1\)
\(\Rightarrow3x=6\Rightarrow x=\dfrac{6}{3}=2\)
Vậy x = 2
b/ \(3\cdot\left|x-1\right|-1=5\cdot\left|x-1\right|-7\)
\(\Rightarrow3\cdot\left|x-1\right|-5\cdot\left|x-1\right|=-7+1\)
\(\Rightarrow\left(3-5\right)\cdot\left|x-1\right|=-6\)
\(\Rightarrow\left|x-1\right|=-6:\left(-2\right)=3\)
\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy...................
c/ \(x^2+8x+15=0\)
\(\Leftrightarrow x^2+3x+5x+15=0\)
\(\Leftrightarrow x\left(x+3\right)+5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=-3\end{matrix}\right.\)
Vậy............
a) 13x - 1 = 10x + 5
13x - 10x = 5 + 1
3x = 6
x = 2
Vậy x = 2 là giá trị cần tìm
b) 3|x - 1| - 1 = 5|x - 1| - 7
-1 + 7 = 5|x - 1| - 3|x - 1|
6 = 2|x - 1|
3 = |x - 1|
=> \(\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
TH1 : x - 1 = 3
x = 3 + 1
x = 4
TH1 : x - 1 = -3
x = -3 + 1
x = -2
Vậy \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\) là giá trị cần tìm
c)