\(x\)

a,\(\left(5876321-999999-3876000-322\right):x=5...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a. \(\left(5876321-999999-3876000-322\right):x=5\)

\(\Rightarrow1000000:x=5\)

\(\Rightarrow5x=1000000\)

\(\Rightarrow x=\dfrac{1000000}{5}=200000\)

Vậy \(x=200000\)

b. \(\left(7593-1997\right)x+\dfrac{1,1}{x}-5696x=\dfrac{1,1}{x}\)

\(\Rightarrow5596x-5696x=\dfrac{1,1}{x}-\dfrac{1,1}{x}=0\)

\(\Rightarrow-100x=0\)

\(\Rightarrow x=0\)

Vậy \(x=0\)

17 tháng 8 2017

Bn ơi thiếu câu kết luận : Vậy x=?

17 tháng 8 2017

\(a\) \(1000000:x=5\)

       \(x=200000\)      

\(b\)   \(5596.x+1,1:x-5696.x=1,1:x\)

         \(x=1\)

17 tháng 8 2017

a) ( 5 876 321 - 999 999 - 3 876 000 - 322 ) : x = 5

=> 1 000 000 : x = 5

=> x = 1 000 000 : 5 = 200 000

Vậy ...

b) ( 7 593 - 1 997 ) . x +1,1/x - 5696x = 1,1/x

=> 7593x + 1,1/x - 5696x - 1,1/x = 0

=> ( 7593x - 5696x ) + (1,1/x-1,1/x) = 0

=> 1897x + 0 = 0

=> 1897x = 0

=> x = 0 : 1897 = 0

Vậy x = 0

Tính nhanh theo mẫu: Mẫu: \(B=\left(1+\dfrac{1}{3}\right)\)x \(\left(1+\dfrac{1}{8}\right)\)x \(\left(1+\dfrac{1}{15}\right)\)x \(\left(1+\dfrac{1}{24}\right)\)x ..... x \(\left(1+\dfrac{1}{120}\right)\)x \(\left(1+\dfrac{1}{413}\right)\) \(B=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\)x \(\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\)x \(\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\)x \(\left(\dfrac{24}{24}+\dfrac{1}{24}\right)\)x........x\(\left(\dfrac{120}{120}+\dfrac{1}{120}\right)\)x...
Đọc tiếp

Tính nhanh theo mẫu:

Mẫu: \(B=\left(1+\dfrac{1}{3}\right)\)x \(\left(1+\dfrac{1}{8}\right)\)x \(\left(1+\dfrac{1}{15}\right)\)x \(\left(1+\dfrac{1}{24}\right)\)x ..... x \(\left(1+\dfrac{1}{120}\right)\)x \(\left(1+\dfrac{1}{413}\right)\)

\(B=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\)x \(\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\)x \(\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\)x \(\left(\dfrac{24}{24}+\dfrac{1}{24}\right)\)x........x\(\left(\dfrac{120}{120}+\dfrac{1}{120}\right)\)x \(\left(\dfrac{143}{143}+\dfrac{1}{143}\right)\)

\(B=\dfrac{4}{3}\)x\(\dfrac{9}{8}\)x\(\dfrac{16}{15}\)x\(\dfrac{25}{24}\)x.......x\(\dfrac{121}{120}\)x \(\dfrac{144}{143}\)

\(B=\dfrac{2x2}{1x3}\)x\(\dfrac{3x3}{2x4}\)x\(\dfrac{4x4}{3x5}\)x\(\dfrac{5x5}{4x6}\)x.......x\(\dfrac{11x11}{10x12}\)x\(\dfrac{12x12}{13x11}\)

\(B=\dfrac{2x3x4x5x......x10x11x12}{1x2x3x......x10x11x12}\)x \(\dfrac{2x3x4x5x....x11x12}{3x4x5x6x......x12x13}\)

B= \(\dfrac{12}{1}\)x\(\dfrac{2}{13}\)

B=\(\dfrac{24}{13}\)

Câu hỏi:

\(B=\left(1+\dfrac{1}{8}\right)\)x\(\left(1+\dfrac{1}{15}\right)\)x\(\left(1+\dfrac{1}{24}\right)\)x..... x \(\left(1+\dfrac{1}{440}\right)\)x \(\left(1+\dfrac{1}{483}\right)\)

3
24 tháng 6 2017

\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)

\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)

\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)

\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)

\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)

\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)

24 tháng 6 2017

B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)

B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)

B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)

B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)

B = 12 . \(\dfrac{2}{13}\)

B = \(\dfrac{24}{13}\)

Bài 1: 

a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)

=>x+4/15=8/5 hoặc x+4/15=-8/5

=>x=4/3 hoặc x=-28/15

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c: \(\Leftrightarrow\left|x-1\right|-1=1\)

=>|x-1|=2

=>x-1=2 hoặc x-1=-2

=>x=3 hoặc x=-1

Bài 2: 

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)

Bài 3: 

a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)

Dấu '=' xảy ra khi x=-15/19

b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=4/7

 

20 tháng 2 2018

3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.

2 tháng 5 2017

a) \(\left(2x-3\right)\left(6-2x\right)=0\)

\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)

\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)

Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).

b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)

\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)

\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)

\(-\dfrac{11}{15}=-x\left(x-1\right)\)

\(\Rightarrow x=1.491631652\)

Vậy \(x=1.491631652\)

c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)

\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)

\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)

Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).

d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)

Vậy \(x=\dfrac{10}{3}\).

e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)

\(\dfrac{x}{3}=\dfrac{7}{10}\)

\(x=\dfrac{3\cdot7}{10}\)

\(x=\dfrac{21}{10}\)

Vậy \(x=\dfrac{21}{10}\).

f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)

\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)

\(\dfrac{x}{5}=\dfrac{11}{10}\)

\(x=\dfrac{5\cdot11}{10}\)

\(x=\dfrac{55}{10}=\dfrac{11}{2}\)

Vậy \(x=\dfrac{11}{2}\).

g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)

Vậy \(x=2\).

h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)

Vậy \(x=14\).

11 tháng 3 2017

a)Ta thấy:

\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)

\(=\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrowđpcm\)

b)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)

\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)

c)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)

11 tháng 3 2017

a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)

Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)

23 tháng 6 2017

Ta có

B = (1 + 1/9).(1 + 1/15).(1 + 1/24)...(1 + 1/440).(1 + 1/483)

Mà 1 + 1/9 = 10/9 = (32 + 1)/32 = 1 + (1/32)

1 + 1/15 = 16/15

23 tháng 6 2017

số 9 là số 8 nha.

23 tháng 6 2017

Ta có :

\(A=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\left(1-\dfrac{1}{25}\right)...............\left(1-\dfrac{1}{361}\right)\left(1-\dfrac{1}{400}\right)\)

\(\Rightarrow A=\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\left(\dfrac{25}{25}-\dfrac{1}{25}\right).............\left(\dfrac{361}{361}-\dfrac{1}{361}\right)\left(\dfrac{400}{400}-\dfrac{1}{400}\right)\)\(\Rightarrow A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}................\dfrac{360}{361}.\dfrac{399}{400}\)

\(\Rightarrow A=\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...............\dfrac{18.20}{19^2}.\dfrac{19.21}{20^2}\)

\(\Rightarrow A=\dfrac{\left(2.3.4......19\right)\left(4.5.6......21\right)}{\left(3.4.5.....20\right)\left(3.4.5...20\right)}=\dfrac{2.21}{3.20}=\dfrac{7}{10}\)

4 tháng 5 2017

Câu 1: Lời giải:

a, Đặt \(A=\dfrac{3x+7}{x-1}\).

Ta có: \(A=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=\dfrac{3x-3}{x-1}+\dfrac{10}{x-1}=3+\dfrac{10}{x-1}\)

Để \(A\in Z\) thì \(\dfrac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Ta có bảng sau:

\(x-1\) \(1\) \(-1\) \(2\) \(-2\) \(5\) \(-5\) \(10\) \(-10\)
\(x\) \(2\) \(0\) \(3\) \(-1\) \(6\) \(-4\) \(11\) \(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\dfrac{3x+7}{x-1}\in Z\).

4 tháng 5 2017

Câu 3:

a, Ta có: \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)

Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(MAX_P=2010\) khi x = -1

b, Ta có: \(-\left|3-x\right|\le0\)

\(\Rightarrow Q=1010-\left|3-x\right|\le1010\)

Dấu " = " khi \(\left|3-x\right|=0\Rightarrow x=3\)

Vậy \(MAX_Q=1010\) khi x = 3

c, Vì \(\left(x-3\right)^2+1\ge0\) nên để C lớn nhất thì \(\left(x-3\right)^2+1\) nhỏ nhất

Ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)

\(\Rightarrow C=\dfrac{5}{\left(x-3\right)^2+1}\le\dfrac{5}{1}=5\)

Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy \(MAX_C=5\) khi x = 3

d, Do \(\left|x-2\right|+2\ge0\) nên để D lớn nhất thì \(\left|x-2\right|+2\) nhỏ nhất

Ta có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\)

\(\Rightarrow D=\dfrac{4}{\left|x-2\right|+2}\le\dfrac{4}{2}=2\)

Dấu " = " khi \(\left|x-2\right|=0\Rightarrow x=2\)

Vậy \(MAX_D=2\) khi x = 2