Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)
=>\(3>=3\sqrt[3]{xyz}\)
=>\(1>=\sqrt[3]{xyz}\)
=>\(1>=xyz\)
dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1
vay x=y=z=1
<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1)
Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ
mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý
vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3
vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)
vì căn 1989 = 3 .căn 221
- => x có dạng a*căn221
- y có dạng b*căn 221
mà a+b=3
đến đây xét là ra => a chỉ có thể bằng 1,2,3,4
Bài 1a:
Ta thấy vế trái là số tự nhiên với mọi $x,y\in\mathbb{N}^*$. Do đó $\sqrt{9x^2+16x+32}\in\mathbb{N}^*$
Điều này xảy ra khi \(9x^2+16x+32\) là số chính phương.
Đặt \(9x^2+16x+32=t^2(t\in\mathbb{N}^*)\)
\(\Leftrightarrow 81x^2+144x+288=9t^2\)
\(\Leftrightarrow (9x+8)^2+224=(3t)^2\Leftrightarrow (3t-9x-8)(3t+9x+8)=224\)
Hiển nhiên $3t+9x+8>0; 3t+9x+8>3t-9x-8$ với mọi $x,t\in\mathbb{N}^*$ và $3t+9x+8; 3t-9x-8$ cùng tính chẵn lẻ.
Do đó \((3t+9x+8; 3t-9x-8)=(16;14); (28;8); (56;4); (112;2)\)
Thử các TH trên ta thu được $x=2$ là kết quả duy nhất thỏa mãn
Thay vào PT ban đầu suy ra $y=\frac{-7}{4}$ (vô lý)
Do đó không tồn tại $x,y$ thỏa mãn.
Bài 1b:
ĐKXĐ: \(x\geq \frac{-1}{3}\)
PT \(\Leftrightarrow 4x^3+5x^2+3x+1-\sqrt{3x+1}=0\)
\(\Leftrightarrow 4x^3+5x^2+3x-\frac{3x}{\sqrt{3x+1}+1}=0\)
\(\Leftrightarrow x\left(4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}\right)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ 4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}=0(*)\end{matrix}\right.\)
Xét $(*)$
\(\Leftrightarrow 4x^2+x+4x+1+2-\frac{3}{\sqrt{3x+1}+1}=0\)
\(\Leftrightarrow x(4x+1)+(4x+1)+\frac{2\sqrt{3x+1}-1}{\sqrt{3x+1}+1}=0\)
\(\Leftrightarrow (4x+1)(x+1)+\frac{3(4x+1)}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}=0\)
\(\Leftrightarrow (4x+1)\left[(x+1)+\frac{3}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}\right]=0\)
Với mọi $x\geq \frac{-1}{3}$ dễ thấy biểu thức trong ngoặc vuông luôn dương. Do đó $4x+1=0\Rightarrow x=\frac{-1}{4}$ (thử lại thấy t/m)
Vậy \(x=0\) hoặc \(x=-\frac{1}{4}\)
x^2 + 7x = căn[(4x+9)/28] (1)
<=> 7(x+1/2)^2 - 7/4 = căn[(4x+9)/28]
Đặt căn[(4x+9)/28] = y + 1/2 (2)
<=> 7y^2 + 7y = x+1/2 (bình phương 2 vế rồi thu gọn) (3)
Mặt khác thay (2) vào (1) ta được: 7x^2 + 7x = y +1/2 (4)
Lấy (3)-(4), ta có: 7(x-y)(x+y+1)=-(x-y) <=>(x-y)(7x+7y+8)=0
<=> x-y =0 (vì 7x+7y+8 >0)
<=> x=y
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
có đúng đề không bạn