K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(b.\)

Theo đề : \(2x=3y=5z\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)\(x+y-x=95\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Rightarrow x=75;y=50;z=30\)

\(d.\)

Đặt : \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

Thay \(x=2k;y=5k\) vào \(xy=90\)

\(\left(2k\right)\left(5k\right)=90\)

\(\Rightarrow10k^2=90\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

+ Nếu \(k=3\Rightarrow x=6;y=15\)

+ Nếu \(k=-3\Rightarrow x=-6;y=-15\)

\(e.\)

Tương tự với câu \(d\)

30 tháng 10 2018

a) Ta có: 3x = 2y; 4x = 2z

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

\(\dfrac{x}{2}=3\) ⇒ x = 6

\(\dfrac{y}{3}=3\) ⇒ y = 9

\(\dfrac{z}{4}=3\) ⇒ z = 12

Vậy x = 6 ; y = 9 ; z = 12

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)

và 2x2 + 3y2 - 5z2 = -405

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)

+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2

⇒ x2 = 36 ⇒ x = 6 hoặc x = -6

+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3

⇒ y2 = 81 ⇒ y = 9 hoặc y = -9

+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5

⇒ z2 = 144 ⇒ z = 12 hoặc z = -12

Vậy...................................( bạn tự vậy nhé )

c) Giống câu a ( bạn tự chép lại )

d) Mik ko bt lm

30 tháng 10 2018

CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!

12 tháng 7 2017

Bài 1:

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)

Xét tích; a.(b+d)=ab+ad (2)

b.(a+c)=ba+bc (3)

Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .

Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)

Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)

Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

hay x<y<z

​Bài 2:

a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)

b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)

c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)

Bài 3:

Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))

=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)

Vậy A\(>\dfrac{1}{5}\)

​Bài 4:

M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp

M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)

​Bài 5:

Ta dùng phương pháp phản chứng:

Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)

=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)

Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)

Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\) Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\) Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng...
Đọc tiếp

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)

Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)

Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất

Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng minh rằng:

\(\frac{hc-hb}{ha}+\frac{hb-ha}{hc}+\frac{ha-hc}{hb}\ge0\)

Bài 4: Cho \(\frac{a}{b}>\frac{x}{y}>\frac{c}{d}\)với x,y,a,b,c,d \(\in Z^+\). Nếu ad-bc=1. C/m \(x\ge a+c\) \(y\ge b+d\)

Bài 5, Tìm giá trị x,y,z để biểu thức

\(A=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|+2016\)đạt giá trị nhỏ nhất

Bài 6, Tìm x,y,z biết \(\dfrac{x}{y+z-5}=\dfrac{y}{x+z+3}=\dfrac{z}{x+y+2}=\dfrac{1}{2}\)(x+y+z)

Bài 7 Cho biết \(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

C/m \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}c^{42}\)

0
17 tháng 11 2022

Bài 7:

x/1=z/2 nên x/6=z/12

=>x/6=y/9=z/12

=>x/2=y/3=z/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

=>x=6; y=9; z=12

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

6 tháng 12 2017

Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)

\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)

\(\Rightarrow\widehat{A}=20^o\)

\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)

\(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)

Vậy............................

19 tháng 12 2016

a) Giải:

Ta có: \(a,b,c>0\Rightarrow a+b+c>0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Vậy \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{1}{3}\)

 

 

19 tháng 12 2016

mk cần phần b cơ. Phần a biết làm từ lâu rùi.