Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b.\)
Theo đề : \(2x=3y=5z\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\) và \(x+y-x=95\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
\(\Rightarrow x=75;y=50;z=30\)
\(d.\)
Đặt : \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Thay \(x=2k;y=5k\) vào \(xy=90\)
\(\left(2k\right)\left(5k\right)=90\)
\(\Rightarrow10k^2=90\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
+ Nếu \(k=3\Rightarrow x=6;y=15\)
+ Nếu \(k=-3\Rightarrow x=-6;y=-15\)
\(e.\)
Tương tự với câu \(d\)
a) Ta có: 3x = 2y; 4x = 2z
⇒ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
⇒ \(\dfrac{x}{2}=3\) ⇒ x = 6
\(\dfrac{y}{3}=3\) ⇒ y = 9
\(\dfrac{z}{4}=3\) ⇒ z = 12
Vậy x = 6 ; y = 9 ; z = 12
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
⇒ \(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)
và 2x2 + 3y2 - 5z2 = -405
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)
+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2
⇒ x2 = 36 ⇒ x = 6 hoặc x = -6
+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3
⇒ y2 = 81 ⇒ y = 9 hoặc y = -9
+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5
⇒ z2 = 144 ⇒ z = 12 hoặc z = -12
Vậy...................................( bạn tự vậy nhé )
c) Giống câu a ( bạn tự chép lại )
d) Mik ko bt lm
CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!
Bài 1:
Vì \(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)
Xét tích; a.(b+d)=ab+ad (2)
b.(a+c)=ba+bc (3)
Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .
Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)
Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)
Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
hay x<y<z
Bài 2:
a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)
b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)
c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)
Bài 3:
Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))
=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)
Vậy A\(>\dfrac{1}{5}\)
Bài 4:
M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp
M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)
Bài 5:
Ta dùng phương pháp phản chứng:
Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)
=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)
Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)
Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài
Bài 7:
x/1=z/2 nên x/6=z/12
=>x/6=y/9=z/12
=>x/2=y/3=z/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
=>x=6; y=9; z=12
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)
\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)
\(\Rightarrow\widehat{A}=20^o\)
\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)
và \(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)
Vậy............................
a) Giải:
Ta có: \(a,b,c>0\Rightarrow a+b+c>0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{1}{3}\)