K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Bài 1:

Ta thấy : \(\left\{\begin{matrix}\left(x-3\right)^2\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|\ge0\)

\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|-3\ge-3\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left(x-3\right)^2=0\\\left|y+1\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-3=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy \(Min_A=-3\) khi \(\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Bài 2:

\(S=1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\)

\(4S=4\left(1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\right)\)

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+97\cdot98\cdot99\left(100-96\right)\)

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+97\cdot98\cdot99\cdot100-96\cdot97\cdot98\cdot99\)

\(4S=97\cdot98\cdot99\cdot100\Rightarrow S=\frac{97\cdot98\cdot99\cdot100}{4}=23527350\)

19 tháng 3 2019

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)

19 tháng 3 2019

Giải: Đặt A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau. 
Ta xét: 
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100 
Tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó: 
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100 
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100) 
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100 
= 1/1.2 - 1/99.100 
= 1/2 - 1/9900 
= 4950/9900 - 1/9900 
= 4949/9900. 
Vậy A = 4949/9900

22 tháng 10 2019

A= 1.2.3 +2.3.4 + 3.4.5 + ... + 97.98.99

=> 4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 97.98.99.4

=> 4A =1.2.3.4 + 2.3.4.(5-1) + 3.4.5(6-2) + ...+ 97.98.99( 100 - 96)

=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + 97.98.99.100 - 96.97.98.99.

=>4A= 97.98.99.100

=> A= (97.98.99.100)/ 4 = 97.98.99.25

22 tháng 10 2019

Em có thể tham khảo cách làm tương tự như link: 

Cách làm nhé. Đừng chép hết. Đề bài của bạn khác 1 chút so với của em.

Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath

30 tháng 9 2018

Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )

         S = (50+1) x 50 : 2 = 1275

13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

5 tháng 1 2017

\(S=1.2.3+2.3.4+...+97.98.99\)

\(\Rightarrow4S=1.2.3.4+2.3.4\left(5-1\right)+...+97.98.99.\left(100-96\right)\)

\(\Rightarrow4S=1.2.3.4+2.3.4.5-1.2.3.4+...+97.98.99.100-96.97.98.99\)

\(\Rightarrow4S=97.98.99.100\)

\(\Rightarrow S=\frac{97.98.99.100}{4}\)

\(\Rightarrow S=97.98.99.25\)

5 tháng 1 2017

S=1.2.3+2.3.3.4.5+...+97.98.99

4.S=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+....+97.98.99.(100-96)

4S-S=1.2.3.4+2.3.4.(5-1)-1.2.3.4+3.4.5.(6-2)-2.3.4.(5-1)+...+97.98.99.(100-96)-96.97.98.(99-95)

S= 97.98.99.100:4=23 527 350

10 tháng 9 2019

Bài 1. Tính các tổng sau:

1. S= 1+2+3+4+.................+98+99+100

S=( 100 - 1 ): 1 + 1 = 100

2. S= 2+4+6+8+.................+996+998

S = ( 998 - 2 ) : 2 + 1 = 499

3. S= 1.2+2.3+3.4+.............+98.99+99.100

S= 1.2 3-0 +2.3 (4-1) +3.4 

4. S= 1.2.3+2.3.4+3.4.5+..............+97.98.99+98.99.100

S= (100 -1) + 1 : 1 = 100

5. S= 1+2+3+..........+98+99+100

S=( 100 - 1) + 1   : 1

S= 100 

10 tháng 9 2019

1.S=(1+100)+(2+99)+...(50+51)  (Tổng cộng có 50 cặp)

S=101+101+101+...101

S=101 x 50=5050

=>S= 5050

27 tháng 1 2016

1/2.(2/1.2.3+2/2.3.4+...+2.97.98.99)=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/97.98-1/98.99)=1/2.(1/1.2-1/98.99) ban tu tinh lay nhe nho tick nha                                                                                            

9 tháng 3 2018

A) \(A=1+4+4^2+4^3+...+4^{26}\)

\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{27}\)

\(\Rightarrow4A-A=4^{27}-1\)

\(3A=4^{27}-1\)

\(A=\frac{4^{27}-1}{3}\)

B) \(B=3+3^3+3^5+3^7+...+3^{21}\)

\(\Rightarrow3^2B=3^3+3^5+3^7+3^9+...+3^{23}\)

\(\Rightarrow3^2B-B=3^{23}-3\)

\(8B=3^{23}-3\)

\(B=\frac{3^{23}-3}{8}\)

C) \(M=1.2+2.3+3.4+...+49.50\)

\(\Rightarrow3M=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(3M=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(3M=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(3M=\left(1.2.3+2.3.4+3.4.5+...+49.50.51\right)-\left(1.2.3+3.4.5+...+48.49.50\right)\)

\(3M=49.50.51\)

\(M=\left(49.50.51\right):3\)

\(M=41650\)

D) \(N=1.2.3+2.3.4+3.4.5+...+49.50.51\)

\(\Rightarrow4N=1.2.3.4+2.3.4.4+3.4.5.4+...+49.50.51.4\)

\(4N=1.2.3.\left(4-0\right)+2.3.4\left(5-1\right)+3.4.5.\left(6-2\right)+...+49.50.51.\left(52-48\right)\)

RỒI BN LÀM GIỐNG NHƯ MK Ở PHẦN C THÌ NÓ SẼ RA!

CHÚC BN HỌC TỐT!!!!