K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Ta có:\(\hept{\begin{cases}3x=2y\\7y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

Ta có:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{95}{16}\)

            \(\Rightarrow\hept{\begin{cases}x=\frac{10.95}{16}=\frac{475}{8}\\y=\frac{15.95}{16}=\frac{1425}{16}\\z=\frac{21.95}{16}=\frac{1995}{16}\end{cases}}\)

          

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

Bài làm

Vì 3x = 2y

=> \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)   (1)

Vì 7y = 5z

=> \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{21}=\frac{z}{15}\)      (2)

Từ (1) và (2) => \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}=\frac{x-y+z}{14-21+15}=\frac{32}{8}=4\)

Do đó: \(\hept{\begin{cases}\frac{x}{14}=4\\\frac{y}{21}=4\\\frac{z}{15}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=56\\y=84\\z=60\end{cases}}\)

Vậy  x = 56

        y = 84

        z = 60

# Chúc bạn học tốt #

22 tháng 6 2015

Ta có \(3x=2y\) \(\Rightarrow3x\times\frac{7}{2}=2y\times\frac{7}{2}\) \(\Rightarrow\frac{21}{2}x=7y\)

\(\Rightarrow\frac{21}{2}x=7y=5z\)

\(\Rightarrow\frac{x}{\frac{2}{21}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{2}{21}-\frac{1}{7}+\frac{1}{5}}=\frac{32}{\frac{16}{105}}=210\) (tính chất dãy các tỉ số bằng nhau)

\(\Rightarrow\frac{x}{\frac{2}{21}}=210\Rightarrow x=210\times\frac{2}{21}=20\)

và \(\frac{y}{\frac{1}{7}}=210\Rightarrow y=210\times\frac{1}{7}=30\)

và \(\frac{z}{\frac{1}{5}}=210\Rightarrow z=210\times\frac{1}{5}=42\)

2 tháng 6 2017

42 nha bn

21 tháng 10 2020

a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

        \(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58

APa dụng TC dãy TSBN ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\Rightarrow x=42;y=28;z=12\)

Các câu còn lại tương tự

2 tháng 8 2016

3x = 2y => x/2 = y/3 => x/10 = y/15         (1) 

7y = 5z => y/5 = z/7 => y/15 = z/21           (2)

Từ (1) và (2) => x/10 = y/15 = z/21

Áp dụng tình chất của dãy tỉ số bằng nhau:

(tự làm nha)

19 tháng 6 2016

Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32 
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1) 
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2) 
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2 
Vậy x = 10*2 = 20 
y = 15*2 = 30 
z = 21*2 = 42 

19 tháng 6 2016

3x = 2y => x = (2/3)y (1)
7y = 5z => z =(7/5)y (2)
thay (1) và (2) vào x - y + z = 32 ta được : 

      (2/3)y - y + (7/5)y = 32
=>  (2/3 -1 + 7/5)y = 32
=>            (16/15)y = 32
=>                  y     = 30
thay y = 30 vào (1) và (2)  ta được x = 20 và z = 42

kl: x = 20 , y = 30 ,z = 42 

16 tháng 7 2015

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

Suy ra \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2.10 = 20; y = 2.15 = 30; z = 2.21 = 42

17 tháng 4 2018

a) 3x = 2y \(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x+y+z}{10+15+21}=\frac{32}{46}=\frac{2}{3}\)

\(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)

Vậy \(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)

17 tháng 8 2019

c) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810.\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x.y.z=810\)

=> \(2k.3k.5k=810\)

=> \(30k^3=810\)

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k=3.\)

Với \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)

Chúc bạn học tốt!

17 tháng 8 2019

a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số = nhau , ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) = \(\frac{x-y+z}{10-15+21}\) = \(\frac{32}{16}\) = 2

Vậy: x = 2.10 = 20

y = 2.15 = 30

z = 2.21 = 42

b) Ta có: 2x = 3y = 5z

=> \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta đc:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) = \(\frac{x+y-z}{15+10-6}\) = \(\frac{95}{19}\) = 5

Vậy: x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30