Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)\left(2y+1\right)=5=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)=1.5=5.1\)
Lập bảng giá trị ta có:
\(x-5\) | \(-1\) | \(-5\) | \(1\) | \(5\) |
\(x\) | \(4\) | \(0\) | \(6\) | \(10\) |
\(2y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(y\) | \(-3\) | \(-1\) | \(2\) | \(0\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(4;-3\right)\), \(\left(0;-1\right)\), \(\left(6;2\right)\), \(\left(10;0\right)\)
b) \(\left(x+7\right)\left(2x-y\right)=7=\left(-1\right)\left(-7\right)=\left(-7\right).\left(-1\right)=1.7=7.1\)
Lập bảng giá trị ta có:
\(x+7\) | \(-1\) | \(-7\) | \(1\) | \(7\) |
\(x\) | \(-8\) | \(-14\) | \(-6\) | \(0\) |
\(2x-y\) | \(-7\) | \(-1\) | \(7\) | \(1\) |
\(y\) | \(-9\) | \(-27\) | \(-19\) | \(-1\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(-8;-9\right)\), \(\left(-14;-27\right)\), \(\left(-6;-19\right)\), \(\left(0;-1\right)\)
a)
+) x, y là số tự nhiên => x-5 , y+1 là số tự nhiên
+) 6=1.6=2.3
+) Em có thể kẻ bảng hoặc tách theo trường hợp:
th1: x-5=1, y+1=6 => x=6, y=5
Th2: x-5=6, y+1=1=>..
Th3: x-5=3, y+1=2=>...
Th4: x-5=2, y+1=3=> ...
b) Câu b làm tương tự nhé: 15=1.15=3.5. Cũng có 4 trường hợp:)
a, 2x + 1/5 = 4/y
=> 2x/1 + 1/5 = 4/y
=> 10x/5 + 1/5 = 4/y
=> \(\frac{10x+1}{5}=\frac{4}{y}\)
=> 10xy + y = 20
=> y[10x + 1] = 20
Mà 10x + 1 lẻ
=> Ta có 4 trường hợp:
TH1: 10x + 1 = -5
=> 10x = -6 => x = -3/5 [k là số nguyên]
TH2: 10x + 1 = -1
=> 10x = -2 => x = -1/5 [k là số nguyên]
TH3: 10x + 1 = 1
=> 10x = 0 => x = 0 => y[10x + 1] = y[0 + 1] = 20 => y = 20.
TH4: 10x + 1 = 5
=> 10x = 4 => x = 2/5 [k là số nguyên]
b,
x + 1/2 = 5/2y + 1
=> \(\frac{2xy+x}{2y+1}+\frac{1}{2}=\frac{5}{2y+1}\)
\(\Rightarrow\frac{2xy+x}{2y+1}-\frac{5}{2y+1}=\frac{1}{2}\)
\(\Rightarrow\frac{2xy+x-5}{2y+1}=\frac{1}{2}\)
=> 4xy + 2x - 10 = 2y + 1
=> 4xy + 2x - 9 = 2y
=> x[4y+2] - 9 = 2y
=> x[4y+2] - 2y = 9
Mà 4y chẵn => 4y + 2 chẵn
=> x[4y+2] chẵn
=> x[4y+2] - 2y chẵn
Mà 9 lẻ
=> x[4y+2] - 2y \(\ne9\)
Vậy x,y k thỏa