Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\hept{\begin{cases}A=\frac{10^{10}+1}{10^{11}+1}\\B=\frac{10^{11}-1}{10^{12}-1}\end{cases}}\)
Ta có:
\(\hept{\begin{cases}10A=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\\10B=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\end{cases}}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
ta có :
\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)
mà \(5^{2017}>5^{2016}\)
\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)
\(\Rightarrow\)\(5^{2017}>25^{1008}\)
có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)
mà \(=25^{1008}\times5\)> \(25^{1008}\)
nên \(5^{2017}>25^{1008}\)
a) A = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 1/17.20
=> 3A = 1/2 - 1/5 + 1/5 - .... + 1/14 - 1/17 + 1/17 - 1/20
=> 3A = 1/2 - 1/20 = 9/20
=> A = 3/20
b) 200410 + 20049 = 20049(1+2004) = 20049 . 2005
200510 = 20059 . 2005
Do 20059 > 20049 nên 200410 + 20049 < 200510
Ta có
\(2A=2^2+2^3+.....+2^{11}\)
\(\Rightarrow2A-A=\left(2^2+2^3+.....+2^{11}\right)-\left(2+2^2+....+2^{10}\right)\)
\(\Rightarrow A=2^{11}-2< 2^{11}\)
=> A<2^11
\(Tac\text{ó}:\\ 2A=2^2+2^3+..........+2^{11}\\ =2A-A=\left(2^2+2^3+......+2^{11}\right)-\left(2+2^2+....+2^{10}\right)\\ =>A=2^{11}-2< 2^{11}\\ =>A< 2^{11}\)
Ta có: \(A=\frac{7^{10}}{1+7+7^2+...+7^9}\)
\(\Rightarrow\frac{1}{A}=\frac{1+7+7^2+...+7^9}{7^{10}}=\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7}\)
Lại có: \(B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
\(\Rightarrow\frac{1}{B}=\frac{1+5+5^2+...+5^9}{5^{10}}=\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}\)
Ta có: \(7^{10}>5^{10}\Rightarrow\frac{1}{7^{10}}< \frac{1}{5^{10}}\)
\(7^9>5^9\Rightarrow\frac{1}{7^9}< \frac{1}{5^9}\)
\(7^8>5^8\Rightarrow\frac{1}{7^8}< \frac{1}{5^8}\)
\(...............................\)
\(7>5\Rightarrow\frac{1}{7}< \frac{1}{5}\)
\(\Rightarrow\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7}< \frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5}\)
\(\Rightarrow\frac{1}{A}< \frac{1}{B}\Rightarrow A>B\)
Chúc bạn học tốt !!!
\(A< \frac{\left(10^{10}-1\right)+11}{\left(10^{11}-1\right)+11}< \frac{10^{10}+10}{10^{11}+10}< \frac{10\left(10^9+1\right)}{10\left(10^{10}+1\right)}< \frac{10^9+1}{10^{10}+1}\)
\(\Rightarrow A< B\)
Vậy A<B