Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+7x+12\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-20\)
\(=\left(x^2+5x+4\right)\cdot\left(x^2+5x+6\right)-20\)
Đặt: \(x^2+5x+5=a\)Khi đó ta có:
\(A=\left(a-1\right)\left(a+1\right)-20=a^2-21=\left(a-\sqrt{21}\right)\left(a+\sqrt{21}\right)\)
tự thay trở lại
a)\(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2\left(7x-4+y\right)\)
b)\(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
\(=\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)-9\left(4x-8\right)\)
\(=\left(4x-8\right)\left(x^2-x-10\right)=4\left(x-2\right)\left(x^2-x-10\right)\)
a.\(7x.\left(y-4\right)^2-\left(4-y\right)^3\)=\(7x.\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2.\left(7x+y-4\right)\)
b.\(\left(4x-8\right).\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9.\left(8-4x\right)\)
=\(\left(4x-8\right)\left(x^2+6-x-7-9\right)=\left(4x-8\right)\left(x^2-x-10\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Ta có : 5x(x - 2y) + 2(2y - x)2
= 5x(x - 2y) + 2(x - 2y)2 (vì (2y - x)2 = (x - 2y)2 )
= (x - 2y)[5x + 2(x - 2y)]
= (x - 2y)(5x + 2x - 4y)
= (x - 2y)(7x - 4y)
b) 7x(y - 4)2 - (4 - y)3
= 7x(y - 4)2 - (4 - y)2(4 - y)
= 7x(y - 4)2 - (y - 4)2(4 - y)
= (y - 4)2(7x - 4 + y)
c) (4x - 8)(x2 + 6) - (4x - 8)(x + 7) + 9(8 - 4x)
= (4x - 8)(x2 + 6) - (4x - 8)(x + 7) - 9(4x - 8)
= (4x - 8)(x2 + 6 - x - 7 - 9)
= 2(x - 4)(x2 - x - 10)
a)\(x^3+4x^2-7x-10=x^3+x^2+3x^2+3x-10x-10=x^2\left(x+1\right)+3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x-10\right)=\left(x+1\right)\left[\left(x^2+5x\right)-\left(2x+10\right)\right]=\left(x+1\right)\left(x+5\right)\left(x-2\right)\)
b) \(x^8+x+1=x^8-x^2+x^2+x+1=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)
a) (x-2)(x+2)(x^2-10)-72=(x^2-4)(x^2-82)
b) x^8+x^6+x^4+x^2+1=x^2 (x^4+x^3+x^2+1+1/x^2)
c)(x+y)^4+x^4+y^4=(x+y)^4+(x+y)^4=2 (x+y)^4
a) (x-2)(x+2)(x^2 - 10) -72
= (x^2 - 4)(x^2 - 10) - 72
= x^4 - 4x^2 -10x^2 + 40 - 72
= x^4 - 14x^2 - 32
= x^4 - 16x^2 + 2x^2 - 32
= x^2(x^2 - 16) + 2(x^2 - 16)
= (x^2 - 16)(x^2 + 2)
= (x-4)(x+4)(x^2 + 2)
c) (x+y)4 + x4 + y4
= 2x4 + 4xy3 + 6x2y2 + 4x3y + 2y3
= 2(y4 + 2xy3 + 3x2y2 + 2x3y + x4)
= 2(y2 + xy + y2)2
\(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(a^{10}+a^5+1\)
\(=\left(a^{10}-a\right)+\left(a^5-a^2\right)+\left(a^2+a+1\right)\)
\(=a\left(a^9-1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\)
\(=a\left(a^3-1\right)\left(a^3+1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\)
\(=\left(a^4+a\right)\left(a^2+a+1\right)\left(a-1\right)+a^2\left(a-1\right)\left(a^2+a+1\right)+\left(a^2+a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^5-a^4+a^2-a\right)+\left(a^3-a^2\right)\left(a^2+a+1\right)+\left(a^2+a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^5-a^4+a^2-a+a^3-a^2+1\right)\)
\(=\left(a^2+a+1\right)\left(a^5-a^4+a^3-a+1\right)\)