\(\frac{x-5}{7-x}\)là số hữu tỉ dương là x=...

2) Cặp số ng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

Nếu là thi Vio thì chỉ điền đáp số

a) x =6.

b) x = 1; y = 4

Giải kiểu VIO ra đáp số khác với trình bày. 2 bài này đều nhẩm được.

a) Để PS đã cho >0 thì 5<x<7. x chỉ bằng 6 thay vào đúng. Ko cần tìm tiếp

b) Để mẫu chung bằng 4 thì y phải =4; => x = 1. Thỏa mãn.

Cách nhẩm tuy không chặt chẽ bằng bài giải chi tiết nhưng VIO thì rất hiệu quả. Mình trình bày cách nghĩ của mình mong các bạn góp ý.

Bài 3: 

 \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
10 tháng 1 2020

Ta có: \(\frac{x}{y}=\frac{2}{3}\)

=> \(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{y}{9}\)(1)

Có: \(\frac{x}{3}=\frac{z}{5}\)=> \(\frac{x}{6}=\frac{z}{10}\)(2)

Từ (1) ; (2) => \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)=> \(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)

=> \(\hept{\begin{cases}\frac{x^2}{36}=\frac{1}{4}\\\frac{y^2}{81}=\frac{1}{4}\\\frac{z^2}{100}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=9\\y^2=\frac{81}{4}\\z^2=25\end{cases}}\)

Vì x, y, z dương nên suy ra: \(\hept{\begin{cases}x=3\\y=\frac{9}{2}\\z=5\end{cases}}\)

=> \(x+2y-2z=3+2.\frac{9}{2}-2.5=2\)

10 tháng 1 2020

Ta có : \(\frac{x}{y}=\frac{2}{3};\frac{x}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)(k>0)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=9k\\z=10k\end{cases}}\)

Thay x=6k; y=9k; z=10k vào \(x^2+y^2+z^2=\frac{217}{4}\) ta có:

 \(\left(6k\right)^2+\left(9k\right)^2+\left(10k^2\right)=\frac{217}{4}\)

\(\Rightarrow6^2.k^2+9^2.k^2+10^2.k^2=\frac{217}{4}\)

\(\Rightarrow k^2.\left(6^2+9^2+10^2\right)=\frac{217}{4}\)

\(\Rightarrow k^2.\left(36+81+100\right)=\frac{217}{4}\)

\(\Rightarrow k^2.217=\frac{217}{4}\)

\(\Rightarrow k^2=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}\)

\(\Rightarrow k=\pm\frac{1}{2}\)

Mà k >0

 \(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}x=6.\frac{1}{2}=3\\y=9.\frac{1}{2}=\frac{9}{2}\\z=10.\frac{1}{2}=5\end{cases}}\)( thỏa mãn x;y dương)

\(\Rightarrow x+2y-2z=3+2.\frac{9}{2}-2.5=3+9-10=2\)

Vậy x+2y-2z=2

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

22 tháng 9 2015

1. \(\frac{x}{y}=\frac{7}{17}\)

3. Có 6 cặp

4. 0 có cặp nào hết

Câu 2 mình không biết nha. Thông cảm

30 tháng 11 2016

\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.3}=\frac{y}{3.3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)

\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{2.3}=\frac{z}{5.2}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)

Từ 1 và 2

\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)

=> x = 6k

y = 9k

z = 10k

Thay vào đẳng thức 3(đề cho) , ta có :

x2 + y2 + z2 = \(\frac{217}{4}\)

=> (6k)2 + (9k)2 + (10k)2 = \(\frac{217}{4}\)

=> 36k2 + 81k2 + 100k2 = \(\frac{217}{4}\)

=> k2(36 + 81 + 100) = \(\frac{217}{4}\)

=> k2 = \(\frac{217}{4}:217=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}=0,25\)

Mà x , y , z dương

=> k chỉ có thể nhận giá trị dương vì 6 ; 9 ; 10 > 0

=> k = 0,25

=> x = 6. 0,25 = 1,5

y = 9. 0,25 = 2,25

z = 10. 0,25 = 2,5

=> x + 2y - 2z = 1,5 + 2. 2,25 - 2. 2,5

= 1,5 + 4,5 - 5

= 1

30 tháng 11 2016

Ta có:\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)

\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\Rightarrow\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{1}{4}\)

\(\Rightarrow x^2=\frac{1}{4}\cdot36=9\Rightarrow x=3\)(vì x là số dương)

\(\Rightarrow y^2=81\cdot\frac{1}{4}=20,25\Rightarrow y=4,5\text{(vì y là số dương)}\)

\(\Rightarrow z^2=\frac{1}{4}\cdot100=25\Rightarrow z=5\text{(vì z là số dương)}\)

\(\Rightarrow x+2y-2z=3+4,5\cdot2-5\cdot2=12-10=2\)

 

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)