Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
Xét \(y=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}\Rightarrow y^2=4+2\sqrt{4-\frac{5+\sqrt{5}}{2}}\)
\(=4+2\sqrt{\frac{3-\sqrt{5}}{2}}=4+\sqrt{6-2\sqrt{5}}=4+\sqrt{\left(\sqrt{5}-1\right)^2}=3+\sqrt{5}\)
Suy ra \(\Rightarrow x=3+\sqrt{5}-\sqrt{3-\sqrt{5}}-1=2+\sqrt{5}-\sqrt{3-\sqrt{5}}\)
............................................................
a) \(P=\frac{\left(x\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-\left(x+4\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x+8}{\sqrt{x}+1}\)
b) Ta có \(x=14-6\sqrt{5}=9-2.3.\sqrt{5}+5=\left(3-\sqrt{5}\right)^2\)
Vậy nên \(\sqrt{x}=3-\sqrt{5}\)
Suy ra \(P=\frac{\left(3-\sqrt{5}\right)^2+8}{3-\sqrt{5}+1}=\frac{58-2\sqrt{5}}{11}\)
c) \(P=\frac{x+8}{\sqrt{x}+1}=\frac{\left(x-1\right)+9}{\sqrt{x}+1}=\left(\sqrt{x}-1\right)+\frac{9}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}+1\right)+\frac{9}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{9}{\sqrt{x}+1}}-2=4\)
minP = 4 khi \(\sqrt{x}+1=\frac{9}{\sqrt{x}+1}\Rightarrow\sqrt{x}+1=3\Rightarrow x=4.\)
Đặt a = \(\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}+\sqrt{2}-\sqrt{\frac{5+\sqrt{5}}{2}}}\)
\(a^2=4+2\sqrt{4-\frac{5+\sqrt{5}}{2}}=4+\sqrt{6-2\sqrt{5}}\)
\(=4+\sqrt{\left(\sqrt{5}-1\right)^2}=3+\sqrt{5}\Rightarrow a=\sqrt{3}+\sqrt{5}\)
\(\Rightarrow\)\(x=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-1\)
\(=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-1=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-1\)
\(=\sqrt{2}-1\Rightarrow x=\sqrt{2}-1\Rightarrow x=x^2+2x-1=0\)
\(B=2x^3+3x^2-4x+2\)
\(B=2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)+1=1\)
Tham khao:
2,Biết x+y=5x+y=5 và x+y+x2y+xy2=24x+y+x2y+xy2=24 Giá trị của biểu thức x3+y3x3+y3 là
3,Nếu đa thức x2+px2+qx2+px2+q chia hết cho đa thức x2−2x−3x2−2x−3 thì khi đó giá trị của
2) x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8
(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4
x3+y3=(x+y)(x2−xy+y2)=5(17,4−3,8)=68
3) x4−2x−3=(x+1)⋅(x−3)x4−2x−3=(x+1)⋅(x−3)
Để đa thức x4+px2+q⋮x2−2x−3x4+px2+q⋮x2−2x−3 => Có hai nghiệm của x là x = -1 hoặc x = 3.
+) Xét x = -1 : x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0
⇒1+p+q=0→q=−1−p⇒1+p+q=0→q=−1−p (1)
+) Xét x = 3 : x4+px2+q=0⇒34+p⋅32+q=0x4+px2+q=0⇒34+p⋅32+q=0
⇒81+p⋅9+q=0⇒81+p⋅9+q=0 (2)
Thế (1) vào (2) ta có : 81+9⋅p−1−p=081+9⋅p−1−p=0
⇔80+8p=0⇔80+8p=0
⇔p=−10⇔p=−10
Vậy giá trị của p là -10.
a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)
Thay x = 4 => \(\sqrt{x}=2\) vào B ta được :
\(B=\frac{2+5}{2-3}=-7\)
b, Ta có : Với \(x\ge0;x\ne9\)
\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)
Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
1/ Bạn trên làm rồi mình không làm lại.
2/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}\)
\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5}{2\sqrt{6}}+\frac{3\sqrt{2}-3\sqrt{3}+3\sqrt{5}-\sqrt{10}+\sqrt{15}-5}{-2\sqrt{6}}\)
\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5-3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}-\sqrt{15}+5}{2\sqrt{6}}\)
\(=\frac{6\sqrt{3}-6\sqrt{5}+2\sqrt{10}}{2\sqrt{6}}=\frac{3}{\sqrt{2}}-\frac{3\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{9\sqrt{2}-3\sqrt{30}+2\sqrt{15}}{6}\)
\(\frac{x^2-2x+2007}{2007x^2}=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}+\frac{2007}{2007x^2}=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}\)
đặt t = 1/x
=> \(\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\frac{1}{2007}-\frac{2t}{2007}+t^2=\frac{1}{2007}-\frac{2t}{2007}+\frac{2007t^2}{2007}=\frac{2007t^2-2t+1}{2007}\)
giải theo kiểu casio 570 VN PLUS cho nhanh nhé
bấm MODE 5 3 2007 = -2 = 1 = = = = =
ra gtnn của 2007t2 - 2t + 1 là 2006/2007 tại t = 1/2007
vậy gtnn của \(\frac{2007t^2-2t+1}{2007}\)là \(\frac{\frac{2006}{2007}}{2007}\)tại t = 1/2007
t = 1/2007 => 1/x = 1//2007 => x = 2007
vậy x = 2007 thì biểu thức có gtnn