Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
\(\frac{x+29}{31}+\frac{x+27}{33}=\frac{x+17}{43}+\frac{x+15}{45}\)
\(\frac{x+29}{31}+1+\frac{x+27}{33}+1=\frac{x+17}{43}+1+\frac{x+15}{45}+1\)
\(\frac{x+60}{31}+\frac{x+60}{33}=\frac{x+60}{43}+\frac{x+60}{45}\)
\(\left(x+60\right)\left(\frac{1}{31}+\frac{1}{33}-\frac{1}{43}-\frac{1}{45}\right)=0\)
VÌ \(\frac{1}{31}+\frac{1}{33}-\frac{1}{43}-\frac{1}{45}\ne0\)
\(\Rightarrow x+60=0\)
\(\Rightarrow x=-60\)
\(-\frac{9}{11}\cdot\frac{3}{8}-\frac{9}{11}\cdot\frac{5}{8}+\frac{17}{11}=-\frac{9}{11}\left(\frac{3}{8}+\frac{5}{8}\right)+\frac{17}{11}=-\frac{9}{11}\cdot1+\frac{17}{11}=1\)
\(\frac{2}{1.3}+....+\frac{2}{53.55}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{53}-\frac{1}{55}=1-\frac{1}{55}=\frac{54}{55}\)
\(x+5-\frac{1}{2}=3\frac{1}{2}\)
\(x+5=3.5+0.5=4\)
\(x=4-5=-1\)
\(3^{x+1}=27=3^3\)
\(x+1=3\)
vậy x=2
\(\frac{x}{108}=-\frac{7}{9}.\frac{5}{6}\)
\(\frac{x}{108}=-\frac{35}{54}\)
\(\Rightarrow x=\frac{108.-35}{54}=-70\)
bài dưới để làm tiếp cho
a/ (X+1)/35+1+(x+3)/33+1 =(x+5)/31+(x+7)/29+1+1
=>(x+36)/35+(x+36)/33-(x+36)/31-(x+36)/27=0
=>(X+36)(1/35+1/33-1/31-1/29)=0
=> x+36=0(vì c=vế 2 luôn luôn khác 0)
=>x=-36
b/ CMTT câu a
trừ tung phân số cho 1 ta được x=2004
Ta có : 10 ^ 28 = 10 ..... 0 ( 28 chữ số 0 ) chia hết cho 8
8 chia hết cho 8
Nên 10 ^ 28 + 8 chia hết cho 8
Ta có : 10 ^ 28 + 8 = 99....9 ( 28 chữ số 9 ) + 1 + 8
=> 10 ^ 28 + 8 = 99....9 ( 28 chữ số 9 ) + 9 chia hết cho 9
Vì ƯCLN ( 8,9 ) = 1
Nên 10 ^ 28 + 8 chia hết cho 72