Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vì hình vuông là hình chữ nhật nên E ⊂ D.
- Vì hình chữ nhật là hình bình hành nên D ⊂ B.
- Vì hình bình hành là hình thang nên B ⊂ C.
- Vì hình thang là hình tứ giác nên C ⊂ A.
Vậy E ⊂ D ⊂ B ⊂ C ⊂ A.
Mặt khác:
- Vì hình vuông là hình thoi nên E ⊂ G.
- Vì hình thoi là hình bình hành nên G ⊂ B.
Vậy E ⊂ G ⊂ B ⊂ C ⊂ A.
Tham khảo:
Ta có:
Mỗi hình chữ nhật là một hình bình hành đặc biệt (có một góc vuông). Do đó: \(C \subset B\)
Mỗi hình thoi là một hình bình hành đặc biệt (có hai cạnh kề bằng nhau). Do đó: \(E \subset B\)
Mỗi hình bình hành là một hình tứ giác (có một cặp cạnh đối song song và bằng nhau). Do đó: \(B \subset A\)
\(C \cap E\)là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi, hay là hình chữ nhật có 4 cạnh bằng nhau (hình vuông). Do đó: \(C \cap E = D\)
Kết hợp lại ta có: \(\left\{ \begin{array}{l}D \subset C \subset B \subset A,\\D \subset E \subset B \subset A,\\C \cap E = D\end{array} \right.\)
Biểu đồ Ven:
a) A là tập con củ B vì:
\( - \sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( { - \sqrt 3 } \right)^2} - 3 = 0\), nên \( - \sqrt 3 \in B\)
\(\sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( {\sqrt 3 } \right)^2} - 3 = 0\), nên \(\sqrt 3 \in B\)
Lại có: \({x^2} - 3 = 0 \Leftrightarrow x = \pm \sqrt 3 \) nên \(B = \{ - \sqrt 3 ;\sqrt 3 \} \).
Vậy A = B.
b) C là tập hợp con của D vì: Mỗi tam giác đều đều là một tam giác cân.
\(C \ne D\) vì có nhiều tam giác cân không là tam giác đều, chẳng hạn: tam giác vuông cân.
c) E là tập con của F vì \(24\; \vdots \;12\) nên các ước nguyên dương của 12 đều là ước nguyên dương của 24.
\(E \ne F\) vì \(24 \in F\)nhưng \(24 \notin E\)
a) \(A = \{ x \in \mathbb{N}|\;x < 2\} = \{ 0;1\} \) và \(B = \{ x \in \mathbb{R}|\;{x^2} - x = 0\} = \{ 0;1\} \)
Vậy A = B, A là tập con của tập B và ngược lại.
b) D là tập hợp con của C vì: Mỗi hình vuông đều là một hình thoi đặc biệt: hình thoi có một góc vuông.
\(C \ne D\) vì có nhiều hình thoi không là hình vuông, chẳng hạn:
c) \(E = ( - 1;1] = \left\{ {x \in \mathbb{R}|\; - 1 < x \le 1} \right\}\) và \(F = ( - \infty ;2] = \left\{ {x \in \mathbb{R}|\;x \le 2} \right\}\)
E là tập con của F vì \( - 1 < x \le 1 \Rightarrow x \le 2\) .
\(E \ne F\) vì \( - 3 \in F\)nhưng \( - 3 \notin E\)
Tập hợp C rỗng vì \(x^2+7x+12=0\Leftrightarrow x\in\left\{-3;-4\right\}\notin N\)
\(a,\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\}\\ b,\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\}\)
\(X=\left\{1;3\right\}\\ X=\left\{1;2;3\right\}\\ X=\left\{1;3;4\right\}\\ X=\left\{1;3;5\right\}\\ X=\left\{1;2;3;4\right\}\\ X=\left\{1;2;3;5\right\}\\ X=\left\{1;3;4;5\right\}\\ X=\left\{1;2;3;4;5\right\}\)
Đáp án: C
Hình vuông là hình thoi đặc biệt có 4 góc vuông nên V ⊂ T đúng.
Hình vuông là hình chữ nhật đặc biệt có 4 cạnh bằng nhau nên V ⊂ N đúng.
Hình thoi là hình bình hành đặc biệt có 4 cạnh bằng nhau nên H ⊂ T sai.
Hình chữ nhật là hình bình hành đặc biệt có 4 góc vuông nên N ⊂ H đúng.
\(A=\left\{x\in N|x^2-10x+21=0;x^3-x=0\right\}\\ x^2-10x+21=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ x^3-x=0\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\\ \Leftrightarrow A=\left\{-1;0;1;3;7\right\}\)
Xong r bạn liệt kê ra nha
Câu 2: \(B\subset C\subset A\)
Câu 3:
\(B\subset A\)
\(C\subset D\)
\(G\subset E\)