K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

18 tháng 1 2021

mk mới hok lớp 6

2 tháng 8 2015

Theo định lý pytago ta có BC^2=AC^2+AB^2 
=>BC=căn(AC bình+ ab bình)=căn(9+16)=5cm 
BC=5cm 

 

 

Ta có BC2 = AB2 + AC2 (định lý Pytago)

BC2 = 32 + 42 = 9 + 16 = 25 \(\Rightarrow\) BC = 5 cm

a) Xét ΔNAM vuông tại M và ΔNBM vuông tại M có 

NM chung

MA=MB(M là trung điểm của AB)

Do đó: ΔNAM=ΔNBM(hai cạnh góc vuông)

Suy ra: NA=NB(Hai cạnh tương ứng)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

NV
11 tháng 7 2021

Áp dụng đính lý Pitago:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow4^2=3^2+AC^2\)

\(\Leftrightarrow AC^2=7\)

\(\Rightarrow AC=\sqrt{7}\) (cm)

Áp dụng định lí Pytago vào ΔBCA vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=4^2-3^2=7\)

hay \(AC=\sqrt{7}\left(cm\right)\)

a: BC=căn 3^2+4^2=5cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>AK=HC

Xét ΔAKH và ΔHCA có

AK=HC

KH=CA

AH chung

=>ΔAKH=ΔHCA

=>góc AKH=góc HCA

mà góc HCA<góc ABC

nên góc AKH<góc ABH

23 tháng 4 2021

undefined

25 tháng 4 2021

Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE