\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) c/m

a) (2a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

5 tháng 11 2018

thanks bn nhìu nha ok

4 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

a) Từ (1) ta có:

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)

Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b) Từ (1) ta có:

\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)

\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)

Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)

a: H=5|3x-6|+100>=100

Dấu = xảy ra khi x=2

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\left(\dfrac{a+2018c}{b+2018d}\right)^2=\left(\dfrac{bk+2018dk}{b+2018d}\right)^2=k^2\)

=>ĐPCM

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

23 tháng 8 2017

1. Câu hỏi của Cuber Việt ( Câu b í -.- )

2. Quy đồng mẫu số:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)

\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)

\(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.

So sánh \(ab+2018a\)\(ab+2018b\):

. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.

. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)

\(\Rightarrow y.\left(x-3\right)=6\)

Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)

Tự lập bảng ...

Vậy ta có những cặp x,y thỏa mãn là:

\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)

23 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)

Cần so sánh:

\(ab+2018a\) với \(ab+2018b\)

Cần so sánh \(2018a\) với \(2018b\)

Cần so sánh \(a\) với \(b\)

\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)

\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)

Câu 1 : (4d) Tính giá trị của biểu thức : \(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) \(b,B=1+3^2+3^3+........+3^{2018}\) Câu 2 : (5d) a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\) b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\) c, Tìm x;y;z biết...
Đọc tiếp

Câu 1 : (4d) Tính giá trị của biểu thức :

\(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)

\(b,B=1+3^2+3^3+........+3^{2018}\)

Câu 2 : (5d)

a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\)

b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\)

c, Tìm x;y;z biết rằng :\(xy=z;yz=4x;xz=9y\)

Câu 3 : (5d)

a, Biết xyz = 1. Tính tổng :\(A=\dfrac{5}{x+xy+1}+\dfrac{5}{y+yz+1}+\dfrac{5}{z+zx+1}\)

b, Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{3\cdot a^6+c^6}{3\cdot b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(b+d\ne0\right)\)

c, Cho :\(a;b;c>0;\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+d-c}{c}\)

Tính giá trị biểu thức :

\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)

Câu 4 : (4d)

a, Tìm giá trị nhỏ nhất của biểu thức :

\(A=\left|2016-x\right|+\left|2017-x\right|\left|2018-x\right|\)

b, Cho biểu thức : \(B=\dfrac{8-x}{x-3}\). Tìm các giá trị nguyên của x để B có giá trị nhỏ nhất.

Câu 5 : (2d) { Câu dễ nhất lun nè!!!!!}

Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)

CMR : A là một số nguyên, biết :

\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{x+t}{y+z}\)

Đây là đề thi để loại hsg ai làm đc làm hộ mk nhé, đặc biệt là câu 3a và câu 4b! Thanks nhìu !!!!!!!!!!

1
22 tháng 1 2018

3a) A=\(\dfrac{5}{x+xy+xyz}+\dfrac{5}{y+yz+1}+\dfrac{5xyz}{z+xz+xyz}\)

=\(\dfrac{5}{x\left(1+y+yz\right)}+\dfrac{5}{y+yz+1}+\dfrac{5xy}{1+x+xy}\)

=\(\dfrac{5}{x\left(1+y+zy\right)}+\dfrac{5x}{x\left(1+zy+y\right)}+\dfrac{5xy}{x\left(1+y+zy\right)}\)

=\(\dfrac{5+5x+5xy}{x\left(1+yz+y\right)}\)

=\(\dfrac{5x\left(yz+1+y\right)}{x\left(1+yz+y\right)}=5\)

4 tháng 2 2018

Thank you!!!!!yeu

21 tháng 12 2017

\(A=2x^2-2\ge-2\)

Dấu "=" xảy ra khi: \(x=0\)

\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)

\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)

Dấu "=" xảy ra khi: \(x=0\)

\(D=3-\left(x+1\right)^2\le3\)

Dấu "=" xảy ra khi: \(x=-1\)

\(E-\left|0,1+x\right|-1,9\le-1,9\)

Dấu "=" xảy ra khi: \(x=-0,1\)

\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)

Dấu "=" xảy ra khi: \(x=0\)

30 tháng 9 2017

Các bạn chỉ cần giúp mk câu b, c, e, f,

15 tháng 12 2017

bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui