K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2019

\(\Delta'=1-m+1=2-m\ge0\Rightarrow m\le2\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Để pt có 2 nghiệm là nghịch đảo nhau \(\Leftrightarrow x_1x_2=1\)

\(\Rightarrow m-1=1\Rightarrow m=2\)

\(\left\{{}\begin{matrix}y_1=x_1+\frac{1}{x_2}\\y_2=x_2+\frac{1}{x_1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=\frac{\left(x_1x_2+1\right)^2}{x_1x_2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=\frac{m^2}{m-1}\end{matrix}\right.\)

Theo Viet đảo, \(y_1;y_2\) là nghiệm: \(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}=0\) (\(m\ne1\))

26 tháng 4 2019

cảm ơn nhiều nhé

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

30 tháng 6 2015

a) ta giải hpt:

\(-\int^{\left(x1+x2\right)+x1x2=0}_{\left(x1+x2\right)-x1x2=3m+4}\Leftrightarrow\int^{2x1x2=-3m-4}_{\left(x1+x2\right)+x1x2=0}\Leftrightarrow\int^{x1.x2=\frac{-3}{2}m-2}_{x1+x2=\frac{3}{2}m+2}\)

=> pt cần tìm: \(x^2-\left(\frac{3}{2}m+2\right)x+\left(-\frac{3}{2}m-2\right)=0\)

b) pt có 2 nghiệm pb trái dấu <=> tích ac<0 <=> \(-\frac{3}{2}m-2<0\Leftrightarrow\frac{3}{2}m>-2\Leftrightarrow m>-\frac{4}{3}\)

 

 

30 tháng 4 2019

a,Phần này dễ, bạn tự làm nha!! :))

b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)

Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)

\(\Leftrightarrow1+3m^2\ge0\)

Mà: \(1+3m^2>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)

Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\)  (x1>x2)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)

Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)

và \(-24m^2\le0\forall m\)

=> Không có giá trị của m thỏa mãn

=.= hk tốt!!

( Có gì sai sót mong bạn bỏ qua ạ ><)

27 tháng 1 2023

sai từ khúc x1>x2 rồi minh mới giải xong m=+-1

 

 

14 tháng 7 2017

Phương trình có 2 nghiệm 

\(\Rightarrow\Delta=\left(m+1\right)^2-\left(m^2-1\right)\ge0\Rightarrow2m+2\ge0\Rightarrow m\ge-1\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2-1\end{cases}}\)

Từ \(x_1+x_2+x_1.x_2=1\Rightarrow2m+2+m^2-1=1\Rightarrow m^2+2m=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=-2\left(l\right)\end{cases}}\)

Vậy \(m=0\)thỏa mãn yêu cầu bài toán 

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)