K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

H B A C

Kẻ đường cao AH

ADHT về cạnh và góc vào △AHB vuông ở H có

AH=AB.cosB

⇒AH=12.sin42o

⇒AH\(\approx\)8(cm)

BH=AB.cosB=12.cos42\(\approx\)9(cm)

⇒HC=BC-BH=22-9=13(cm)

ADĐL pytago vào △AHC vuông ở H có

AH2+HC2=AC2

⇒82+132=AC2

⇒AC=\(\approx15,3\)(cm)

ADTSLG vào △AHC vuông ở H có

sinC=\(\frac{AH}{AC}=\frac{8}{15,3}\)

\(\widehat{C}\)\(\approx\)36o

\(\widehat{A}\)=102o

Ta có BC=BH+HC=12+18=30(cm)

ADHTvề cạnh và đường cao vào △ABCvuông ở C đường cao AH có

AH2=BH.CH=12.18=216

⇒AH=\(6\sqrt{6}\)(cm)

AB2=BH.BC=12.30=360

⇒AB=\(6\sqrt{10}\)(cm)

AC2=HC.AC=18.30=540

⇒AC=\(6\sqrt{15}\)(cm)

ADTSLG vào △AHC vuông ở H có

sinC=\(\frac{AH}{AC}=\frac{6\sqrt{6}}{6\sqrt{15}}\)

⇒C\(\approx\)39o

\(\widehat{A}\)=81o

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

2 tháng 10 2021

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

2 tháng 10 2021

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

a: góc C=180-110-40=30 độ

Xét ΔABC có AB/sinC=BC/sinA=AC/sinB

=>AB/sinC=BC/sinA

=>AB/sin30=12/sin110

=>\(AB\simeq6,39\left(cm\right)\)

b: BC/sinA=AC/sinB

=>AC/sin40=12/sin110

=>\(AC\simeq8,21\left(cm\right)\)

20 tháng 10 2023

1:

BC=BH+CH

=3,6+6,4

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{3.6\cdot10}=6\left(cm\right)\\AC=\sqrt{6.4\cdot10}=8\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

ΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}\simeq90^0-37^0=53^0\)

2:

ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

ΔABM vuông tại A có AD là đường cao

nên \(BD\cdot BM=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BD\cdot BM\)