Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)
Vậy \(MinB=-\sqrt{2}\Leftrightarrow x=y=z=-\frac{\sqrt{2}}{3}\)
\(MaxB=\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)
Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)
\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)
Áp dụng bđt AM - GM ta có :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)
\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)
Cộng vế với vế ta được :
\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Đức Hùng hình như áp dụng sai ( ngược dấu ) BĐT Bunhiacopxki rồi
Ta có \(y^2+yz+z^2=1-\frac{3x^2}{2}\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2+\left(x-z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}\le B\le\sqrt{2}\)
Vậy để B đạt giá trị lớn nhất thì \(\left\{{}\begin{matrix}x=y=z\\x+y+z=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)
Để B đạt giá trị nhỏ nhất thì\(\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)
Vậy GTLN của B là \(\sqrt{2}\) và GTNN của B là \(-\sqrt{2}\)