Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
\(A=3^9-8=\left(3^3\right)^3-2^3=27^3-2^3=\left(27-2\right)\left(27^2+27\times2+2^2\right)=25\times\left(27^2+27\times2+2^2\right)\)
Vậy A chia hết cho 25 (đpcm)
***
\(B=\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2+n-2\right)\left(n+2-n+2\right)=2n\times4=8n\)
Vậy B chia hết cho 8 (đpcm)
***
\(C=\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7+n-5\right)\left(n+7-n+5\right)=\left(2n+2\right)\times12=12\times2\times\left(n+1\right)=24\times\left(n+1\right)\)
Vậy C chia hết cho 24 (đpcm)
***
Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3
\(D=\left(2k+1\right)^2-\left(2k+3\right)^2=\left(2k+1+2k+3\right)\left(2k+1-2k-3\right)=\left(4k+4\right)\times\left(-2\right)=\left(-2\right)\times4\times\left(k+1\right)=-8\times\left(k+1\right)\)Vậy D chia hết cho 8 (dpcm)
Bài 1 :
a)Tìm giá trị nhỏ nhất của biểu thức
A = 2x2 - 4x + 8
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2+4\)
\(=\left(\sqrt{2}x+\sqrt{2}\right)^2+4\)
Ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\) \(\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+4\ge4>0\)
=> A > 4
=> Amin = 4 \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2}=0\)
\(\Leftrightarrow x=-1\)
Bài 1:
a) \(A=2x^2-4x+8\)
\(=2\left(x^2-2x+4\right)=2\left(x-2\right)^2\)
Xét \(2\left(x-2\right)^2\ge0\)
\(\Rightarrow Min_A=0\Leftrightarrow x=2\)
b) \(B=n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left[\left(n^2-4\right)\left(n^2-1\right)\right]\)
\(=n\left[\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Xét \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là 5 số nguyên liên tiếp
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮30\)
1) A=4*\(\frac{10^{2n}-1}{9}\) B=\(2\cdot\frac{10^{n+1}-1}{9}\) C=\(8\cdot\frac{10^n-1}{9}\)
đặt 10^n=X => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9
=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)
2) = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)
mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6
do đó 4mn(m^2-n^2) chia hết 6*4=24
Bài 2 ko đúng bn ak 6,4 không nguyên tố cùng nhau mà