Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì \(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)
Xét tích; a.(b+d)=ab+ad (2)
b.(a+c)=ba+bc (3)
Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .
Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)
Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)
Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
hay x<y<z
Bài 2:
a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)
b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)
c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)
Bài 3:
Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))
=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)
Vậy A\(>\dfrac{1}{5}\)
Bài 4:
M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp
M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)
Bài 5:
Ta dùng phương pháp phản chứng:
Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)
=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)
Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)
Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
Đặt a/2016=b/2017=c/2018=k
=>a=2016k; b=2017k; c=2018k
M=4(a-b)(b-c)(c-a)^2
=4*(2016k-2017k)(2017k-2018k)(2016k-2018k)^2
=4*(-k)*(-k)*(-2k)^2
=4k^2*4k^2=16k^4
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow a-b=b-c=-\dfrac{1}{2}\left(c-a\right)\)
\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=4\left(-\dfrac{1}{2}\left(c-a\right)\right)\left(-\dfrac{1}{2}\left(c-a\right)\right)-\left(c-a\right)^2\)
\(\Rightarrow M=\left(c-a\right)^2-\left(c-a\right)^2=0\)
Đặt \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{c}{2019}=k\Rightarrow a=2017k;b=2018k;c=2019k\)
M = 4(2017k - 2018k)(2018k - 2019k) - (2019k - 2017k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2
= 0