K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

\(0^{2020}\cdot1^{2021}\cdot....\cdot21^{2120}=0\cdot1^{2021}\cdot...\cdot21^{2120}=0\)

12 tháng 8 2023

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)

\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)

\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)

12 tháng 8 2023

(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x

x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x

2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x

2023x - 2022x = 1 - 1/2023

x = 2022/2023

11 tháng 12 2021

B=13-5+2022=2030

11 tháng 12 2021

\(\left|x-1\right|+\left(y+2\right)^{2022}=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(y+2\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\ \Rightarrow B=13.1-5\left(-8\right)+2022=13+40+2022=2075\)

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12

4 tháng 2 2021

\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2022}+\left|x+y-z\right|=0\)

Ta có : \(\left(2x-1\right)^{2020}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2022}\ge0\forall x;\left|x+y-z\right|\ge0\forall x;y;z\)

Dấu bằng xảy ra <=> \(x=\frac{1}{2};y=\frac{2}{5};z=x+y=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)

24 tháng 10 2020

Ta thấy: \(\hept{\begin{cases}\left(x-3\right)^{2020}\ge0\\\left(y-z\right)^{2022}\ge0\\\left|x-y-z\right|\ge0\end{cases}\left(\forall x,y,z\right)}\)

\(\Rightarrow\left(x-3\right)^{2020}+\left(y-z\right)^{2022}+\left|x-y-z\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-3\right)^{2020}=0\\\left(y-z\right)^{2022}=0\\\left|x-y-z\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=z\\y+z=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=z=\frac{3}{2}\end{cases}}\)

Vậy x = 3 và y = z = 3/2

24 tháng 10 2020

Ta có : \(\hept{\begin{cases}\left(x-3\right)^{2020}\ge0\forall x\\\left(y-z\right)^{2022}\ge0\forall y;z\\\left|x-y-z\right|\ge0\forall x;y;z\end{cases}\Rightarrow}\left(x-3\right)^{2020}+\left(y-z\right)^{2022}+\left|x-y-z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-3=0\\y-z=0\\x-y-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=z\\x=y+z\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=1,5\\z=1,5\end{cases}}\)

Vậy x = 3 ; y = 1,5 ; z = 1,5 là giá trị cần tìm