\(ax^2\)

(d);y=2x+3

Xác định (P) biết qua A(-1;1) v

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

(P) đi qua A(-1;1)

thay x=-1 ; y =1 vào (P) :

<=> 1=a . (-1)<=> a= 1

(P) : y=x2

19 tháng 4 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

13 tháng 11 2017

a)

g(x) = 2x - 3 g(x) = 2x - 3 f: 0.5x + y = 2 f: 0.5x + y = 2 TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3”

b) Do (D3) // (D1) nên \(a=-\frac{1}{2}\)

Vậy thì phương trình của (D3) là \(y=-\frac{1}{2}x+b\)

Do (D3) qua điểm (2;-2) nên \(-\frac{1}{2}.2+b=-2\Rightarrow b=-1\)

Vậy (D3)  : \(y=-\frac{1}{2}x-1\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

1)

Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên \(a=2\)

Mặt khác (d) đi qua \(A(-3;\frac{1}{2})\Rightarrow \frac{1}{2}=a.(-3)+b=2(-3)+b\)

\(\Leftrightarrow b=\frac{13}{2}\)

PTĐT cần tìm: \(y=2x+\frac{13}{2}\)

Ý 2: (d): $y=ax+b$ song song với đường thẳng \(y=-x+4\)

\(\Rightarrow a=-1\)

Mặt khác (d) đi qua điểm (-3;1) nên:

\(1=a(-3)+b=(-1)(-3)+b\)

\(\Leftrightarrow b=-2\)

PTĐT cần tìm: \(y=-x-2\)

Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng \(y=2x-3\Rightarrow a=2\)

Mặt khác (d) đi qua điểm \((\frac{1}{3}; \frac{4}{3})\) nên:

\(\frac{4}{3}=\frac{1}{3}a+b=\frac{1}{3}.2+b\Leftrightarrow b=\frac{2}{3}\)

Vậy PTĐT cần tìm là \(y=2x+\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

2)

Gọi E là giao điểm của $(d_1), (d_2)$

Khi đó:

\(y_E=-x_E+6=3x_E-6\)

\(\Leftrightarrow x_E=3\Rightarrow y_E=3\)

Như vậy điểm E có tọa độ \((3;3)\)

Để 3 đường thẳng $(d_1),(d_2),(d_3)$ đồng quy thì \(E\in (d_3)\)

\(\Leftrightarrow 3=3m+m-5\Leftrightarrow 4m=8\Leftrightarrow m=2\)

Vậy m=2

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

9 tháng 11 2016

a/ Hàm số đi qua A(2,7)

\(\Rightarrow7=-2a+5\)

\(\Leftrightarrow a=-1\)

b/ Thay \(x=1+\sqrt{3}\)\(y=4-\sqrt{3}\)ta được

\(4-\sqrt{3}=-\left(1+\sqrt{3}\right)a+5\)

\(\Leftrightarrow a=1\)

9 tháng 11 2016

ai giúp mình giải bài này vs