Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có 100=99+1 hay x+1
Thay x+1 vào P(99) .Ta có :\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-..................+\left(x+1\right)x-1\)=\(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-.............+x^2+x-1\) =\(\left(x^{99}-x^{99}\right)-\left(x^{98}-x^{98}\right)+\left(x^{97}-x^{97}\right)-.........+\left(x^2-x^2\right)+x-1^{ }\)
=x-1=99-1=98
\(P\left(x\right)=x^{99}-100x^{98}+100x^{97}-...+100x-1\)
\(P\left(99\right)=99^{99}-100\cdot99^{98}+100\cdot99^{97}-...+100\cdot99-1\)
\(P\left(99\right)=99^{99}-\left(99+1\right)\cdot99^{98}+\left(99+1\right)\cdot99^{97}-...+\left(99+1\right)\cdot99-1\)
\(P(99)= 99^{99}-99^{99}-99^{98}+99^{98}+99^{97}-99^{97}-99^{96}+...+99^2+99-1\)
\(P\left(99\right)=99-1=98\)

Nếu tính ra thì vẫn đc
\(P\left(x\right)=x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}+...+\left(99+1\right)x-1\)
\(P\left(x\right)=x^{99}-99x^{99}-99x^{98}+99x^{98}-99x^{97}+...+99x+x-1\)
\(P\left(x\right)=x^{98}\left(x-99\right)+x^{97}\left(x-99\right)-x^{96}\left(x-99\right)+...+x\left(x-99\right)-1\)
\(P\left(x\right)=\left(x^{98}+x^{97}-x^{96}+x^{95}-...-x^2+x\right)\left(x-99\right)-1\)
Vẫn đau đầu @@ chắc đề sai thật

Câu hỏi của Jin Tiyeon - Toán lớp 7 - Học toán với OnlineMath
Em click chuột vào link trên.

Ở bên trên, mình viết nhầm, đề bài là:
Cho P(x)=x^99-100x98+100x97-100x^96+...+100x-1. Tính P(99)
Mong mọi người giúp đỡ

a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)

\(p\left(x\right)=x^{99}-100x^{98}+100x^{97}-....+100x-1\)
Ta có: \(x=99\Rightarrow x+1=100\)
\(\Rightarrow p\left(99\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-...+\left(x+1\right)x-1\)
\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-...+x^2+x-1\)
\(=x-1\)
\(=99-1\)
\(=98\)
p(x)=x^99-100x^98+100x^97-...+100x-1
vì x=99=>x+1=100=>p(99)=x^99-(x+1)x^98+(x+1)x^97-...+(x+1)x-1
=x^99-x^99-x^98+x^98+x^97-...+x^2+x-1
=x-1
=99-1
=98

Bài 1:
\(M\left(1\right)=a+b+6\)
Mà \(M\left(1\right)=0\)
\(\Rightarrow a+b+6=0\)
\(\Rightarrow a+b=-6\)( * )
\(\Rightarrow2a+2b=-12\) (1)
Ta có: \(M\left(-2\right)=4a-2b+6\)
Mà \(M\left(-2\right)=0\)
\(\Rightarrow4a-2b=-6\)(2)
Lấy (1) cộng (2) ta được:
\(6a=-18\)
\(a=-3\)
Thay a=-3 vào (* ) ta được:
\(b=-3\)
Vậy a=-3 ; b=-3
Bài 2:
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right).x=5.8\)
\(\Leftrightarrow\left(1-2y\right).x=40\)
Vì \(x,y\in Z\Rightarrow1-2y\in Z\)
mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)
Thử từng TH
Do x=99 nên \(x-99=0\)
Ta có:
\(P=x^{100}-100x^{99}+100x^{98}-100x^{97}+\cdots+100x^2-100x+2124\)
\(=\left(x^{100}-99x^{99}\right)-\left(x^{99}-99x^{98}\right)+\cdots+\left(x^2-99x\right)-\left(x-99\right)+2025\)
\(=x^{99}\left(x-99\right)-x^{98}\left(x-99\right)+\cdots+x\left(x-99\right)-\left(x-99\right)+2025\)
\(=x^{99}.0-x^{98}.0+\cdots+x.0-0+2025\)
\(=0+0+\cdots+0+2025=2025\)
Đề bài:
\(P = x^{100} - 100 x^{99} + 100 x^{98} - 100 x^{97} + \hdots - 100 x + 2124\)
với \(x = 99\). Tính giá trị \(P\).
Bước 1: Phân tích biểu thức
Biểu thức gồm:
Nhìn kỹ, các số hạng từ \(x^{99}\) đến \(x\) đều có hệ số \(- 100\) hoặc \(+ 100\) xen kẽ dấu âm dương.
Bước 2: Viết lại biểu thức rõ ràng hơn
Ta có thể tách biểu thức như sau:
\(P = x^{100} + \sum_{k = 99 , 97 , 95 , . . .}^{1} 100 x^{k} - \sum_{k = 99 , 98 , 96 , 94 , . . .}^{2} 100 x^{k} + 2124\)
Nhưng câu hỏi có dấu trừ \(- 100 x^{99} + 100 x^{98} - 100 x^{97} + \hdots\), tức dấu thay đổi từng số hạng.
Cụ thể:
Bước 3: Tách tổng thành hai phần:
Gọi
\(S = \sum_{k = 1}^{99} \left(\right. - 1 \left.\right)^{k} 100 x^{100 - k}\)
Ta có:
\(P = x^{100} + S + 2124\)
Bước 4: Viết \(S\) như sau:
\(S = 100 \sum_{k = 1}^{99} \left(\right. - 1 \left.\right)^{k} x^{100 - k} = 100 \sum_{m = 1}^{99} \left(\right. - 1 \left.\right)^{m} x^{100 - m}\)
Thay đổi chỉ số:
Gọi \(j = 100 - m\), khi \(m = 1 \Rightarrow j = 99\), khi \(m = 99 \Rightarrow j = 1\)
Vậy:
\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{100 - j} x^{j}\)
Nhưng \(\left(\right. - 1 \left.\right)^{100 - j} = \left(\right. - 1 \left.\right)^{100} \cdot \left(\right. - 1 \left.\right)^{- j} = 1 \cdot \left(\right. - 1 \left.\right)^{- j} = \left(\right. - 1 \left.\right)^{j}\) (vì \(\left(\right. - 1 \left.\right)^{- j} = \left(\right. - 1 \left.\right)^{j}\)).
Nên:
\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} x^{j}\)
Bước 5: Thay \(x = 99\):
\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} 99^{j}\)
Bước 6: Tính tổng:
\(\sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} 99^{j} = - 99 + 99^{2} - 99^{3} + 99^{4} - \hdots + \left(\right. - 1 \left.\right)^{99} 99^{99}\)
Bước 7: Nhận xét
Đây là tổng của cấp số nhân với số hạng đầu:
\(a_{1} = - 99\)
Tỷ số công:
\(r = - 99\)
Số hạng tổng:
\(n = 99\)
Tổng của cấp số nhân:
\(S_{n} = a_{1} \frac{1 - r^{n}}{1 - r} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{1 - \left(\right. - 99 \left.\right)} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{1 + 99} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{100}\)
Bước 8: Tính \(S\):
\(S = 100 \times S_{n} = 100 \times \left(\right. \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{100} \left.\right) = - 99 \left(\right. 1 - \left(\right. - 99 \left.\right)^{99} \left.\right)\)
Bước 9: Tính \(P\):
\(P = x^{100} + S + 2124 = 99^{100} - 99 \left(\right. 1 - \left(\right. - 99 \left.\right)^{99} \left.\right) + 2124\)
Bước 10: Chú ý về dấu lũy thừa \(\left(\right. - 99 \left.\right)^{99}\):
\(\left(\right. - 99 \left.\right)^{99} = - \left(\right. 99 \left.\right)^{99}\)
Vậy:
\(P = 99^{100} - 99 \left(\right. 1 - \left(\right. - \left(\right. 99 \left.\right)^{99} \left.\right) \left.\right) + 2124 = 99^{100} - 99 \left(\right. 1 + 99^{99} \left.\right) + 2124\)
Bước 11: Phân tích thêm
\(P = 99^{100} - 99 - 99 \times 99^{99} + 2124 = 99^{100} - 99 \times 99^{99} - 99 + 2124\)
Bước 12: Nhận xét
Lưu ý:
\(99^{100} = 99 \times 99^{99}\)
Nên:
\(P = \left(\right. 99 \times 99^{99} \left.\right) - 99 \times 99^{99} - 99 + 2124 = 0 - 99 + 2124 = 2124 - 99 = \boxed{2025}\)
Kết luận:
\(\boxed{P = 2025}\)