Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành
\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)
áp dụng bđt Bunhiacopxki dạng phân thức ta được
\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)
phép chứng minh sẽ hoàn tất nếu ta chứng minh được
\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)
hay ta cần chứng minh
\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)
khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
dùng thủ thuật giống một bài toán lớp 3
Cho m=n=0 ta được \(f\left(0\right)=2f^2\left(0\right)\Rightarrow f\left(0\right)=0\)
Cho m=1; n=0 ta được \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)=1\end{cases}}\). Ta xét trường hợp f(1)=1, với f(1)=0 ta xét tương tự, với f(1)=1 ta lần lượt tính được
\(\hept{\begin{cases}f\left(2\right)=f\left(1^2+1^2\right)=f^2\left(1\right)+f^2\left(1\right)=2\\f\left(4\right)=f\left(2^2+0^2\right)=f^2\left(2\right)+f^2\left(0\right)=4\\f\left(5\right)=f\left(2^2+1^2\right)=f^2\left(2\right)+f^2\left(1\right)=5\end{cases}}\)
áp dụng thủ thuật của một bài toán lớp 3. Ta không tính trực tiếp f(3) nhưng ta lại có \(f^2\left(5\right)=f\left(25\right)=f\left(3^2+4^2\right)=f^2\left(4\right)+f^2\left(3\right)\)từ đó ta tính được f(3)=3
Tương tự như vậy ta có thể tính được f(6) nhờ vào đẳng thức 62+82=102 trong đó \(f\left(8\right)=f\left(2^2+2^2\right)=2f^2\left(2\right)=8;f\left(10\right)=f\left(3^2+1^2\right)=f^2\left(3\right)+f^2\left(1\right)=10\)
Tiếp tục để tính f(7) ta để ý 72+12=50 =52+52, từ đó f(7)=7. Cũng như thế do đó 112+22=102+52 nên suy ra f(11)=11
Cách làm này có thể tổng quát hóa như thế nào? Ý tưởng là \(m^2+n^2=p^2+q^2\left(1\right)\)thì \(f^2\left(m\right)+f^2\left(n\right)=f^2\left(q\right)+f^2\left(p\right)\)do đó nếu tính được \(f\left(n\right);f\left(q\right);f\left(p\right)\)thì f(m) cũng sẽ tính được
Làm thế nào để có những đẳng thức dạng (1) dưới dạng tổng quát, cho phép ta chứng minh f(n)=n với mọi n bằng quy nạp? Chú ý rằng (1) có thể viết lại thành (m-p)(m+p)=(q-n)(q+n)=N. Do đó nếu chọn 2 số N có 2 cách phân tích thành tích của những số cùng tính chẵn hoặc lẻ, ta sẽ tìm được nghiệm cho (1). Chọn N=8k=4k.2=4.2k và N=16k=4k.4=2k.8 ta được hệ
\(\hept{\begin{cases}m-p=2;m+p=4k;q-n=4;q+n=2k\\m-p=4;m+p=4k;q-n=8;q+n=2k\end{cases}}\)
Từ đó được các hằng đẳng thức tương ứng
\(\hept{\begin{cases}\left(2k+1\right)^2+\left(k-2\right)^2=\left(2k-1\right)^2+\left(k+2\right)^2\\\left(2k+2\right)^2+\left(k-4\right)^2=\left(2k-2\right)^2+\left(k+4\right)^2\end{cases}}\)
Từ hai đẳng thức này với chú ý f(n)=n với n=1;2;3;4;5;6 ta dễ dàng chứng minh quy nạp được rằng f(n)=n với mọi n thuộc N
Trường hợp f(1)=0 cũng bằng cách lý luận trên ta nêu ra f(n)=0 với mọi n thuộc N