Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài easy quá mà!
4. a) Áp dụng tỉ dãy số bằng nhau:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)
\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)
Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)
\(a_2-2=99\Leftrightarrow a_2=101\)
.......v.v...
\(a_{100}-100=1\Leftrightarrow a_{100}=101\)
Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)
Bài 5/
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)
Suy ra:
\(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")
Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
Bài 1:
\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)
\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)
\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)
\(B=x^8.y^7.\frac{2}{3}\)
Bài 2:
\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)
\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)
B tương tự nhé, đáp án là (theo mình)
\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)
a)\(x=\dfrac{-14\cdot52}{72}\\ x=\dfrac{-91}{9}\)
b)\(x=\dfrac{120\cdot7.2}{70}\\ x=\dfrac{432}{35}\)
c)\(x=\dfrac{2\dfrac{2}{3}\cdot8.5}{5}\\ x=\dfrac{68}{15}\)
d)\(x=\dfrac{4\dfrac{2}{5}\cdot9.5}{8}\\ x=\dfrac{209}{40}\)
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
Đề hỏi gì vậy !!
\(2^x\) = 3
\(2^x\)\(\approx2^{1,58496251}\)
\(\Rightarrow x=1,58496251\)