Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4m^2-2\left(3m-2\right)\)
\(=4m^2-6m+4\)
\(=4\left(m^2-\dfrac{3}{2}m+1\right)\)
\(=4\left(m^2-2\cdot m\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{7}{16}\right)\)
\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)
Dấu '=' xảy ra khi m=3/4
\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)
\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)
b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)
\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)
\(=m^2-12m+95\)
\(=\left(7-m\right)\left(5-m\right)+60\)
Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)
\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)
\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
\(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\ge0\) \(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
\(A=x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-2\right)^2+4m\)
\(A=m^2+4\ge4\)
\(\Rightarrow A_{min}=4\) khi \(m=0\)
ta có : \(\Delta'=\left(m-1\right)^2-\left(3m-3\right)=m^2-2m+1-3m+3\)
\(\Leftrightarrow\Delta'=m^2-5m+4\)
để phương trình có 2 nghiệm\(\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2-5m+4\Leftrightarrow\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\)
áp dụng định lí vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=3m-3\end{matrix}\right.\)
ta có : \(x_1^2+x_2^2\ge10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2\left(m-1\right)\right)^2-2\left(3m-3\right)\ge10\)
\(\Leftrightarrow4m^2-8m+4-6m+6\ge10\)
\(\Leftrightarrow4m^2-14m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{7}{2}\\m\le0\end{matrix}\right.\) kết hợp với \(\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\m\le0\end{matrix}\right.\) vậy \(m\ge4\) hoặc \(m\le0\)
1.
\(\Delta'=1-m>0\Rightarrow m< 1\)
Để pt có 2 nghiệm t/m đề bài
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
2. Để pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)
Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)
Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)
3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)
Để pt có 2 nghiệm thỏa mãn đề bài
\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)
\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)
\(\Delta=4m^2+4m+1\)
phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m\ne-\frac{1}{2}\)
theo hệ thức viete : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1.x_2=-m-1\end{matrix}\right.\)
ta có : x12+x22=2
<=> (x1+x2)2-2x1x2-2=0
<=> 4m2+2m+2-2=0
<=> 4m2+2m=0
\(\Leftrightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=0\end{matrix}\right.\)
kết hợp với \(m\ne-\frac{1}{2}\)
=> m=0
\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m-1\right)x-3m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m-1\right)x-3m-2=0\left(1\right)\end{matrix}\right.\)
Do vai trò 3 nghiệm như nhau, giả sử \(x_3=1\) và \(x_1;x_2\) là 2 nghiệm của (1)
Để pt có 3 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2+4\left(3m+2\right)>0\\1-\left(3m-1\right)-3m-2\ne0\end{matrix}\right.\) \(\Rightarrow m\ne-\frac{1}{3}\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=-3m-2\end{matrix}\right.\)
\(x_1^2+x_2^2+x_3^2>15\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+1>15\)
\(\Leftrightarrow\left(3m-1\right)^2+2\left(3m+2\right)-14>0\)
\(\Leftrightarrow9m^2>9\Rightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)