K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

\(N=x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\)

\(2N=2x+4y-2\sqrt{2x-1}-10\sqrt{4y-3}+26\)

\(=\left(2x-1-2\sqrt{2x-1}+1\right)+\left(4y-3-10\sqrt{4y-3}+25\right)+4\)

\(=\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{4y-3}-5\right)^2+4\ge4\)

8 tháng 7 2019

\(A=\sqrt{2x^2-4x+3}+3\)

Ta có: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)

\(=2[\left(x-1\right)^2+\frac{1}{2}]\)

\(=2\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)

\(\Rightarrow MinA=4\Leftrightarrow x=1\)

17 tháng 1 2016

\(A=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)

\(=\sqrt{\left(x^2-6x+9\right)+2\left(y^2+2y+1\right)}+\sqrt{\left(x^2+2x+1\right)+3\left(y^2+2y+1\right)}\)

\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

\(\ge\sqrt{\left(x-3\right)^2+0}+\sqrt{\left(x+1\right)^2+0}\)

\(=\left|3-x\right|+\left|x+1\right|\)

\(\ge\left|3-x+x+1\right|\)

\(=4\)

Dấu bằng xảy ra khi và chỉ khi : 

\(\left(y+1\right)^2=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

\(\left(x-3\right)\left(x+1\right)\ge0\Leftrightarrow x^2-2x-3\ge0\Leftrightarrow\left(x-1\right)^2\ge4\Leftrightarrow\left|x-1\right|\ge2\Leftrightarrow x\ge3;x\le-1\)

Vậy GTNN của biểu thức là 4 khi  \(x\ge3\) hoặc \(x\le-1\) và \(y=-1\)

 

 

17 tháng 1 2016

Bạn dùng min copski
 

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

11 tháng 10 2015

1. \(A=\frac{1}{\left(\sqrt{x}+\frac{2016}{\sqrt{x}}\right)^2}\)

Áp dụng bất đẳng thức Côsi cho mẫu số.

2. Thế y theo x từ pt đầu xuống pt sau rồi quy đồng, giải pt bậc 4.

C2: \(pt\left(1\right)-2pt\left(2\right)\Leftrightarrow\left(x-y+5\right)\left(x-y-13\right)=0\)

3. a.

\(\text{ĐK: }2x^2-x=x\left(2x-1\right)\ge0\Leftrightarrow x\le0\text{ hoặc }x\ge\frac{1}{2}\)

Để pt có nghiệm thì \(2x-x^2\ge0\Leftrightarrow x\left(2-x\right)\ge0\Leftrightarrow0\le x\le2\)

Vậy \(\frac{1}{2}\le x\le2\)

\(pt\Leftrightarrow\sqrt{x\left(2x-1\right)}=x\left(2-x\right)\Leftrightarrow\sqrt{2x-1}=\sqrt{x}\left(2-x\right)\text{ (do }x>0\text{)}\)

\(\Leftrightarrow2x-1=x\left(2-x\right)^2\Leftrightarrow\left(x-1\right)\left(x^2-3x-1\right)=0\)

b.

\(\text{ĐK: }......\)

\(\sqrt{2x+1}=a;\text{ }\sqrt[3]{4-3x}=b\text{ }\left(a\ge0\right)\)

\(pt\Leftrightarrow3a-2b=13\Leftrightarrow a=\frac{2b+13}{3}\)

Lại có: \(3a^2+2b^3=3\left(2x+1\right)+2\left(4-3x\right)=11\)

Thay vào: \(3\left(\frac{2b+13}{3}\right)^2+2b^3=11\Leftrightarrow6b^3+4b^2+52b+136=0\)

\(\Leftrightarrow\left(b+2\right)\left(6b^2-8b+68\right)=0\)