Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+14\)
Ta có: \(x^2\ge0\forall x\in R\)
\(\Rightarrow A=x^2+14\le14\)
Dấu " = " xảy ra khi \(x=0\)
Khi đó: \(A=0+14=14\)
Vậy \(x=0\)khi đạt \(GTNN=14\)
\(B=\left(x+1\right)^2-12\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=\left(x+1\right)^2-12\ge-12\)
Dấu " =" xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(x=-1\)khi đạt \(GTNN=-12\)
\(C=\left|x-5\right|+15\)
Ta có: \(\left|x-5\right|\le0\forall x\in R\)
\(\Rightarrow C=\left|x-5\right|+15\ge15\)
Dấu " = " xảy ra khi \(\left|x-5\right|=0\Rightarrow x=5\)
Vậy \(x=5\)khi đạt \(GTNN=15\)
\(D=\left|x-2\right|+\left|y+5\right|+19\)
Ta có: \(\left|x-2\right|\ge0\forall x\in R\)
\(\left|y+5\right|\ge0\forall y\in R\)
\(\Rightarrow D=\left|x-2\right|+\left|y+5\right|+19\ge19\)
Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)
Vậy \(x=2;y=-5\)khi đạt \(GTNN=19\)
hok tốt!!
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
\(A=\left|x+2\right|+\left|x-1\right|\)
a) Biểu thức A đã đưa về dạng thu gọn.
b) Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|x-1\right|\ge0\end{cases}}\Rightarrow A=0\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|x-1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=1\end{cases}}\)(loại vì x khác nhau)
Vậy A không thề bằng 0.
c) Amin = 0 \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Bạn nên nhớ GTTĐ cuả một số của một số bất kì luôn lớn hơn hoặc bằng 0
Bình phương của một số cũng vậy.
1. a) do |x-3| >= 0 với mọi x
nên (-18 + |x-3| ) >= -18
Vậy GTNN của A là -18. Dấu bằng xảy ra khi x - 3 = 0.
câu này phải là GTLN nhé bạn
b) tương tự x2 >= 0 với mọi giá trị của x
=> -x2 <= 0 với mọi x
nên 14 + (-x2) <= 14 hay B<= 14
Vậy GTLN của B là 14. dấu bằng xảy ra khi x2= 0 hay x = 0
c) (x+1)2 >= 0 với mọi x nên 2(x+1)2 >= 0
suy ra C>= -17
dấu = xảy ra khi x + 1 = 0 hay x = -1
bài 2.
a) |a - 30| >=0 với mọi... nên -|a-30|<= 0
|b + 20| >=0 nên -|b+20|<= 0
vây A <= 0 + 0+ 2011 = 2011
vậy GTLN của A là 2011 khi a-30=0 và b+20 = 0 hay a = 30 và b = -20
b)
c) (x-2)2>=0 nên -(x-2)2<=0
vậy C <= 25 + 0 = 25
dấu =.... khi x - 2 = 0 hay x = 2