K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

Bạn nên nhớ GTTĐ cuả một số của một số bất kì luôn lớn hơn hoặc bằng 0

Bình phương của một số cũng vậy.

1. a) do |x-3| >= 0 với mọi x

nên (-18 + |x-3| ) >= -18

Vậy GTNN của A là -18. Dấu bằng xảy ra khi x - 3 = 0.

câu này phải là GTLN nhé bạn

b) tương tự x2 >= 0 với mọi giá trị của x

=> -x2 <= 0 với mọi x

nên 14 + (-x2) <= 14 hay B<= 14

Vậy GTLN của B là 14. dấu bằng xảy ra khi x2= 0 hay x = 0

c) (x+1)2 >= 0 với mọi x nên 2(x+1)2 >= 0

suy ra C>= -17

dấu = xảy ra khi x + 1 = 0 hay x = -1

bài 2.

a) |a - 30| >=0 với mọi... nên -|a-30|<= 0

|b + 20| >=0 nên -|b+20|<= 0

vây A <= 0 + 0+ 2011 = 2011

vậy GTLN của A là 2011 khi a-30=0 và b+20 = 0 hay a = 30 và b = -20

b)

c) (x-2)2>=0 nên -(x-2)2<=0

vậy C <= 25 + 0 = 25

dấu =.... khi x - 2 = 0 hay x = 2 

18 tháng 1 2016

a-18

b,kho tinh duoc

c-17

a2011

b14

c25

tich cai

 

\(A=x^2+14\)

Ta có: \(x^2\ge0\forall x\in R\)

\(\Rightarrow A=x^2+14\le14\)

Dấu " = " xảy ra khi \(x=0\)

Khi đó: \(A=0+14=14\)

Vậy \(x=0\)khi đạt \(GTNN=14\)

\(B=\left(x+1\right)^2-12\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R\)

\(\Rightarrow B=\left(x+1\right)^2-12\ge-12\)

Dấu " =" xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(x=-1\)khi đạt \(GTNN=-12\)

\(C=\left|x-5\right|+15\)

Ta có: \(\left|x-5\right|\le0\forall x\in R\)

\(\Rightarrow C=\left|x-5\right|+15\ge15\)

Dấu " = " xảy ra khi \(\left|x-5\right|=0\Rightarrow x=5\)

Vậy \(x=5\)khi đạt \(GTNN=15\)

\(D=\left|x-2\right|+\left|y+5\right|+19\)

Ta có: \(\left|x-2\right|\ge0\forall x\in R\)

          \(\left|y+5\right|\ge0\forall y\in R\)

\(\Rightarrow D=\left|x-2\right|+\left|y+5\right|+19\ge19\)

Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)

Vậy \(x=2;y=-5\)khi đạt \(GTNN=19\)

hok tốt!!

22 tháng 3 2020

đúng ko đấy

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

13 tháng 5 2019

\(A=\left|x+2\right|+\left|x-1\right|\)

a) Biểu thức A đã đưa về dạng thu gọn.

b) Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|x-1\right|\ge0\end{cases}}\Rightarrow A=0\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left|x-1\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=1\end{cases}}\)(loại vì x khác nhau)

Vậy A không thề bằng 0.

c) Amin = 0 \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)