Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)=1+2x^{ }+x^4-4x+4x^3\)\(=\left(x^4+2x^3-x^2\right)+\left(2x^3+4x^2-2x\right)-x^2-2x+1=x^2\left(x^2+2x-1\right)+2x\left(x^2+x-1\right)-\left(x^2+2x-1\right)\)\(\left(x^2+2x-1\right)\left(x^2+2x-1\right)=\left(x^2+2x-1\right)^2\)
b)\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-36x^2\)
\(=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
c)81x4+4
=81x4+36x2+4-36x2
=(9x2+2)2-(6x)2
=(9x2+6x+2)(9x2-6x+2)
\(4x^2\left(x+y\right)-x-y\)
\(=4x^2\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(4x^2-1\right)\)
\(=\left(x+y\right)\left(2x-1\right)\left(2x+1\right)\)
\(16ty^2+6xt-9t-tx^2\)
\(=t.\left(16y^2+6x-9-x^2\right)\)
\(=t.\left[\left(4y\right)^2-\left(x^2-2.x.3+3^2\right)\right]\)
\(=t.\left[\left(4y\right)^2-\left(x-3\right)^2\right]\)
\(=t.\left(4y-x+3\right)\left(4y+x-3\right)\)
\(x^2-9xy+20y^2\)
\(=\left(x^2-4xy\right)-\left(5xy-20y^2\right)\)
\(=x.\left(x-4y\right)-5y\left(x-4y\right)\)
\(=\left(x-4y\right)\left(x-5y\right)\)
(1+x2)2−4x(1−x2)
= \(-\left(1-x^2\right)^2-4x\left(1-x^2\right)\)
đặt \(\left(1-x^2\right)\)= a
ta có :
- a . a - 4x .a
= a ( - a - 4x )
thay a = \(\left(1+x^2\right)\) ta có
\(\left(1+x^2\right)\left(1-x^2-4x\right)\)
phân tích tiếp nhé !
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2x^2.1+1^2\right]-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+64+36\)
\(=\left[\left(x^2\right)^2-2.10x^2+10^2\right]-\left(2x\right)^2\)
\(=\left(x^2-10\right)^2-\left(2x\right)^2\)
\(=\left(x^2-10-2x\right)\left(x^2-10+2x\right)\)
\(4x^4+81\)
\(=\left[\left(2x^2\right)^2+2.2x^2.9+9^2\right]-\left(6x\right)^2\)
\(=\left(2x^2+9\right)-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right).\left(2x^2+9+6x\right)\)
Tham khảo nhé~
a. x3+y3+z3-3xyz
=(x3+3x2y+3xy2+y3)+z3+(-3xyz-3x2y-3xy2)
=((x+y)3+z3)-3xy(x+y+z)
=(x+y+z)((x+y)2-z(x+y)+z2)-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-zx-zy+z2-3xy)
=(x+y+z)(x2-xy+y2+z2-zx-zy)
b. (x2-8)2+36
=x4-16x2+64+36
=x4-16x2+100
=(x4+20x2+100)-36x2
=(x2+10)2-36x2
=(x2-6x+10)(x2+6x+10)
Chúc bạn học giỏi, k cho mình nhé!!!
a/Dùng hằng đẳng thức A2-B2=(A+B)(A-B) phân tích được ngay
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
=\(\left(3x-2y+3\right)\left(4-x-4y\right)\)
b/Chắc chỉ phân tích hằng đẳng thức (A-B)2=A2-2ab+B2
\(49\left(y-4\right)^2-9y^2-3y-36=49y^2-392y+784-9y^2-3y-36\)
\(=40y^2-395y+748\)
Mình dùng biệt thức cho ra nghiệm vô tỉ, không biết cho phải tại mình tính sai hay đề thiếu nữa
c/Khai triển biểu thức ban đầu ta được
\(x\left(x-y\right)+y\left(y-x\right)=x^2-xy+y^2-xy=x^2-2xy+y^2=\left(x-y\right)^2\)
a)Bạn xem lại đề được không
b)Đặt x^2 ra ngoài
c)Đặt x^3=t rồi quy đồng
d)Bt = -17(x^2-1), còn ẩn phụ gì nữa?
1/
a, x2+36=12x
<=>x2-12x+36=0
<=>(x-6)2=0
<=>x-6=0
<=>x=6
b, 5x(x-3)+3-x=0
<=>5x(x-3)-(x-3)=0
<=>(5x-1)(x-3)=0
<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)
2/ Sửa đề x2z2 = y2z2
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có
\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)
(x2 - 8)2 + 36 = x4 - 16x + 100 = x4 - 20x2 + 100 - 4x2
= (x2 - 10) - 4x2 = (x2 - 10 - 2x)(x2 - 10 + 2x)