K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

13 tháng 5 2016

Các số lẻ có 2 chữ số giống nhau là:

     11 , 33 , 55 , 77 , 99 .

Ta thấy mỗi số hơn kém nhau 22 đơn vị (33-11=22.......)

Số lượng số hạng là:

    (99-11):22+1=5(số)

Tống của tất cả các số lẻ có 2 chữ số giống nhau là :

  (99+11)x5:2=275 

Tổng của tất cả các số lẻ có 2 chữ số giống nhau được gấp lên 9 lần là :

  275x9=2475 

8 tháng 5 2017

- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).

31 tháng 1 2020

Bạn tham khảo nhé!

Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath

8 tháng 5 2017

Ta có: \(y=4x^3-x^4=x^3\left(4-x\right)=x.x.x.\left(4-x\right)\).
Vì vậy: \(3y=x.x.x.\left(12-4x\right)\).
Với \(0\le x\le4\) thì \(\left\{{}\begin{matrix}x\ge0\\12-4x\ge0\end{matrix}\right.\).
Áp dụng bất đẳng thức cô si cho bốn số: x,x,x, 12 - 3x ta có:
\(x.x.x.\left(12-3x\right)\le\left(\dfrac{x+x+x+12-3x}{4}\right)^4=81\).
Dấu bằng xảy ra khi: \(x=12-3x\)\(\Leftrightarrow4x=12\)\(\Leftrightarrow x=3\).
Như vậy: \(3y\le81\) \(\Leftrightarrow y\le27\) nên max của y bằng 27 khi x = 3.

2 tháng 5 2016

Ta có:

\(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)

Để \(\frac{n+5}{n}\) có GTN thì \(1+\frac{5}{n}\) phải có GTN

\(\Rightarrow\frac{5}{n}\) phải có GTN

\(\Rightarrow5\) phải chia hết cho n

\(\Rightarrow n\inƯ\left(5\right)\)

\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)

Mà n là STN nên \(n\in\left\{1;5\right\}\)

Vậy có tất cả 2 STN n để \(\frac{n+5}{n}\) có GTN

3 tháng 5 2016

Ta có : \(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)

Để \(1+\frac{5}{n}\in N\Leftrightarrow\frac{5}{n}N\in\)N

=> n thuộc ước của 5 là 1 ; 5

Vậy n = 1 ; 5