Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
giả sử (Xo;Yo) là nghiệm của HPT => (Yo;Xo) cũng là nghiệm của HPT => Xo=Yo
=>16x-8x+16=5x^2 +4x^2 -x^2 <=> -7x^2 +8x +16=0 giải pt bậc 2 ra ta đc 2 nghiệm X, lấy từng x thay vào y^2 = (x+8)(x^2 + 2 ) sẽ tìm ra y sau khi tìm ra x X vs Y rồi thay vào pt nếu thấy đúng thì thỏa mãn k đúng thì loại nghiệm đó ok
tai sao (Xo;Yo) la nghiệm thì (Yo;Xo) cung la nghiệm vậy bạn giải thích giùm minh vs
\(1-2x\sqrt{x^2+x+1}=2x^2-x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{x^2+x+1}+x^2+x+1\right)-4x^2=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2+x+1}\right)^2-\left(2x\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2+x+1}+2x\right)\left(x-\sqrt{x^2+x+1}-2x\right)=0\)
\(\Leftrightarrow\left(3x-\sqrt{x^2+x+1}\right)\left(-x-\sqrt{x^2+x+1}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-\sqrt{x^2+x+1}=0\\-x-\sqrt{x^2+x+1}=0\end{array}\right.\)
+) \(3x-\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow3x=\sqrt{x^2+x+1}\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow9x^2=x^2+x+1\)
\(\Leftrightarrow8x^2-x-1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1+\sqrt{33}}{16}\left(tm\right)\\x=\frac{1-\sqrt{33}}{16}\left(ktm\right)\end{array}\right.\)
+) \(-x-\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow-x=\sqrt{x^2+x+1}\left(ĐK:x\le0\right)\)
\(\Leftrightarrow x^2=x^2+x+1\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy pt đã cho có taapk nghiệm là \(S=\left\{\frac{1+\sqrt{33}}{16};-1\right\}\)
Biến đổi phương trình tương đương: \(2x\sqrt{x^2+x+1}=-2x^2+x+1\)
\(\Leftrightarrow\begin{cases}x\left(-2x^2+x+1\right)\ge0\\4x^2\left(x^2+x+1\right)=\left(-2x^2+x+1\right)^2\end{cases}\Leftrightarrow\begin{cases}x\left(2x^2-x-1\right)\le0\\8x^3+7x^2-2x-1=0\end{cases}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x-1\right)\left(2x+1\right)\le0\\\left(x+1\right)\left(8x^2-x-1\right)=0\end{array}\right.\Leftrightarrow\hept{\begin{cases}x\in\left(-\infty;-\frac{1}{2}\right)\\\left[\begin{array}{nghiempt}x=-1\\\frac{1\pm\sqrt{33}}{16}\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\\frac{1\pm\sqrt{33}}{16}\end{array}\right.\)
Vậy, phương trình có nghiệm \(x=-1\) hoặc \(x=\frac{1\pm\sqrt{33}}{16}\)
\(\left(2x-4\right)^3+\left(x-5\right)^3=\left(3x-9\right)^3\)
Đặt \(\hept{\begin{cases}2x-4=u\\x-5=v\end{cases}}\)thì ta có
\(u^3+v^3=\left(u+v\right)^3\)
\(\Leftrightarrow u^2v+uv^2=0\)
\(\Leftrightarrow uv\left(u+v\right)=0\)
Với \(\Leftrightarrow\hept{\begin{cases}u=0\\v=0\\u=-v\end{cases}}\) (không có ký hiệu hoặc 3 cái nên dùng tạm cái này)
\(\Leftrightarrow\hept{\begin{cases}2x-4=0\\x-5=0\\2x-4=-x+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\x=5\\x=3\end{cases}}\)
Đặt 2x-4=a (1)
x-5=b (2)
3x-9=c (3)
Từ (1),(2),(3) --->a+b+c=0
Mặt khác : nếu a+b+c=0 --->a3+b3+c3=3abc (*)
Từ (*)--->(2x-4)3+(x-5)3-(3x-9)3=3(2x-4)(x-5)(3x-9)=0
---> x=2;x=5;x=3
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)