Cho tam giác ABC cân tại A ( BAC<90 ). Kẻ BI vuông góc với AC tại I. Trên cạnh B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2020

Tham khảo:        Câu hỏi của Lưu Đức Mạnh       

14 tháng 1 2020

Câu c) Qua D kẻ đường thẳng song song với AC cắt BC tại G 

+) ^DGB = ^ACB ( đồng vị )

\(\Delta\)ABC cân tại A => ^ACB = ^ABC 

=> ^DGB = ^ABC  = ^^DBG => \(\Delta\)DBG cân => DB = DG (1)

+) Có FM //AC ( cùng vuông BH ) => ^FMB = ^ACB = ^ABC  ( đồng vị; \(\Delta\)ABC cân )

Xét \(\Delta\)BDM vuông tại D và \(\Delta\)MFB vuông tại F có: BM chung  ; ^FMB = ^DBM ( = ^ABC )

=> \(\Delta\)BDM = \(\Delta\)MFB 

=> DB = FM ( 2)

Từ (1) ; (2) => FM = DG

Dễ chứng minh FMEH là hình chữ nhật  => FM = EH 

=> DG = EH = CK  (3)

+) Gọi I là giao điểm BC và DK 

Xét \(\Delta\)GDI và \(\Delta\)CKI có:

^GDI = ^CKI ( so le trong )

DG = CK ( theo 3)

^DGI = ^KCI ( so le trong )

=> \(\Delta\)GDI = \(\Delta\)CKI 

=> DI = KI 

=> I là trung điểm của KD 

=> BC qua trung điểm KD

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

3 tháng 4 2019

A B C H D K 1 2

                     

3 tháng 4 2019

a) Vì BA=BA ( GT )

\(\Rightarrow\Delta BAD\) cân tại B ( đn)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất )      (4)

b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau )    (1)

Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ)      (2)

 Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)

Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)

\(\Rightarrow AD\)là phân giác của góc HAC.

c)  Xét \(\Delta HAD\)và \(\Delta CAD\)có:

           \(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)

\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)

Xét tam giác DHC có HD=CD ( cmt)

\(\Rightarrow\Delta DHC\)cân tại D

\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)

Ta có:  \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)

            \(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)

Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)

\(\Rightarrow\Delta AHK\)cân tại A.

d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )

                                                    \(\Rightarrow DC+AK>KC+AK\)

                                            mà AH=AK ( cmt)

                                                     \(\Rightarrow DC+AH>KC+AK\)

                                                      \(\Rightarrow DC+AH+BD>KC+AK+BD\)

                                                        mà AB=BD ( cmt)

                                                      \(\Rightarrow AK+KC+AB< DC+BD+AH\)

                                                       \(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)

                                           

( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )

7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO