Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
P= 5x2+2y2+4xy-4x+8y+25
= (4x2 +4xy+y2) + (x2-4x+4)+(y2 +8y +16)+5
= (2x+y)2+ (x-2)2+(y+4)2+5 lớn hơn hoặc bằng 5 với mọi x,y
dấu ''='' xảy ra <=> \(\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}\)
<=>\(\begin{cases}2x=-y\\x=2\\y=-4\end{cases}\)
<=> x= 2 và y =-4
vậy GTNN của P = 5 <=> x= 2 và y =-4
câu 2
Giải 1.
Xét tứ giác ADHE có
góc DAE = góc ADH = góc AEH =90 độ (gt)
=> tứ giác ADHE là hình chứ nhật (dhnb)
Vậy tứ giác ADHE là hình chữ nhật
giải 2. giả sử AH cắt DE tại O . nối O với M
xét tam giác HEC vuông tại E( HE vuông góc với EC) có
EM là đường trung tuyến ứng với cạnh HC ( M là trung điểm HC)
=> EM = 1/2HC (t/c)
mà HM = 1/2 HC(M là trung điểm của HC)
=> EM=HM
Xét hình chữ nhật ADHE có : AH giao với DE tại O (gt)
=> O là trung điểm của AH và O là trung điểm DE (t/c)
mà AH=DE ( tứ giác ADHE là hình chữ nhật)
=> OH=OE
Xét tam giác OHM và tam giác OEM có
OH =OE(cmt)
HM= EM (cmt)
OM chung
do đó tam giác OHM = tam giác OEM (c-c-c)
=> góc OHM = góc OEM (2 góc tương ứng)
mà góc OHM=90 độ ( AH vuông góc với HC)=> góc OEM =90 độ hay góc DEM= 90 độ
Xét tam giác DEM có góc DEM 90 độ => tam giác DEM vuông tại E
Vậy tam giác DEM vuông tại E
giải 3: giải sử DE=2EM
mà DE= AH (cmt) và HC=2EM(cmt)
=> AH= HC
=> tam giác AHC cân tại H (dhnb) mà AHC=90 độ (AH vuông góc vs HC)
=> tam giác AHC vuông cân tại H ( dnhn)
=> góc ACH= 45 độ
Xét tam giác ABC vuông tại A có
góc ABC + góc ACB=90 độ (t/c)
=> góc ABC = 90độ - 45 độ = 45 độ
=>góc ABC = góc CAB
do đó tam giác ABC vuông cân (dhnb)
Vậy tam giác ABC vuông cân thì DE=2EM
Ta có : 2(a2+b2)
= 2a2+2b2
=(a2+2ab+b2)+(a2-2ab+b2)
=(a+b)2+(a-b)2\(\ge\left(a+b\right)^2\)
Dấu = xảy ra khi : (a-b)2=0
\(\Leftrightarrow\)a=b
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm