Bài 34: Cho biểu thức: A=(b^2+c^2-a^2)^2-4b^2c^2(đố Nguyễn Lê Ph...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

A B C D E K F

a, K;F là trung điểm của BD; BC (gt) 

=> FK là đtb của tg BDC 

=> FK // DC 

mà DC // AB do ABCD là hình thang

=> FK//AB

b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD

=> KE = 1/2 AB VÀ KE //  AB

có AB = 4 

=> ke = 2 cm

c, có KE // AB mà KF // AB

=> E;K;F thẳng hàng (tiên đề ơ clit)

18 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+dc\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)

\(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)

18 tháng 6 2017

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Lại có :

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

25 tháng 12 2021

a/ Xét \(\Delta ABD\) và \(\Delta KBD\)

AB=BK (gt); BD chung

\(\widehat{ABD}=\widehat{KBD}\) (gt)

\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)

b/

\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)

\(AH\perp BC\left(gt\right)\)

=> AH//DK (cùng vuông góc với BC)

c/

Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có

\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\)  (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)

Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)

=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)

=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng

10 tháng 7 2016

bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)

\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác: 

+a+c > b => a+c-b > 0

+b+c > a=>b+c-a > 0

+a+b+c và b+c+a hiển hiên đều lớn hơn 0

Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)

\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)

19 tháng 6 2021

còn cái nịt