cho gọc nhọn xOy, M là điểm thuộc tia phân giác Ot của góc xOy, kẻ MA vuông góc với OX (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,b: Xét ΔOAM vuông tại A và ΔOBM vuông tạiB co

OM chung

góc AOM=góc BOM

=>ΔOAM=ΔOBM

=>OA=OB và MA=MB

=>ΔOAB cân tại O

c: Xét ΔMAD vuông tại A và ΔMBE vuông tại B có

MA=MB

góc AMD=góc BME

=>ΔMAD=ΔMBE

=>MD=ME

24 tháng 3 2022

MỌI NGƯỜI ƠI GIÚP E VỚI Ạ EM ĐANG CẦN RẤT GẤP Ạ

 

24 tháng 3 2022

viết chữ cũng sai ah đây dell buồn giúp

18 tháng 3 2022

giúp mình nhanh vs ạ mn ạ

giúp mình vs

 

19 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của trần thị thúy vân - Toán lớp 7 - Học toán với OnlineMath

12 tháng 2 2016
Câu b:Xét tam giác BME và tam giác AMD: góc B = góc A MB=MA góc BME = góc AMD suy ra: tam giác BME = tam giác AMD suy ra: MD=ME Câu a:Xét tam giác OBM và tam giác OAM ta có OA chung Góc BOM = góc AOM góc B= góc A suy ra: tam giác OBM = tam giác OAM suy ra: MA=MB và suy ra: OA=OB ; tam giác OAB là tam giác cân tại O vì OA=OB

Vẽ cái hình ra mún tính j thì tính

19 tháng 3 2018

a) Xét tam giác vuông AOM và tam giác vuông BƠM có:

Cạnh huyền AM chung

\(\widehat{AOM}=\widehat{BOM}\) (gt)

\(\Rightarrow\Delta AOM=\Delta BOM\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow MA=MB;OA=AB\)hay tam giác OAB cân tại O.

b) Xét tam giác vuông AMD và tam giác vuông BME có:

AM = BM

\(\widehat{AMD}=\widehat{BME}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMD=\Delta BME\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow MD=ME\)

c) Ta thấy OA = OB; AD = BE nên OD = OE

Vậy thì \(\Delta ODI=\Delta OEI\left(c-g-c\right)\)

\(\Rightarrow\widehat{OID}=\widehat{OIE}\)

Chúng lại là hai góc kề bù nên \(\widehat{OID}=\widehat{OIE}=90^o\) hay MO vuông góc DE.

24 tháng 3 2020

c, cm : OM la trung truc cua DE . ai giup mik voii 

4 tháng 3 2015

Câu b:Xét tam giác BME và tam giác AMD:

                   góc B = góc A

                   MB=MA

                   góc BME = góc AMD

 suy ra: tam giác BME = tam giác AMD

 suy ra:   MD=ME