Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
Giúp mk vs ạ
a: Xét ΔCHB vuông tại H và ΔCBA vuông tại B có
\(\widehat{HCB}\) chung
Do đó: ΔCHB~ΔCBA
b:
Xét ΔAHB vuông tại H và ΔABC vuông tại B có
\(\widehat{HAB}\) chung
Do đó: ΔAHB~ΔABC
=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)
=>\(AB^2=AH\cdot AC\)
c: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)
ΔAHB~ΔABC
=>\(\dfrac{BH}{BC}=\dfrac{BA}{AC}\)
=>\(BH=\dfrac{AB\cdot BC}{AC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
d: Xét ΔBKH vuông tại K và ΔBHA vuông tại H có
\(\widehat{KBH}\) chung
Do đó: ΔBKH~ΔBHA
=>\(\dfrac{BK}{BH}=\dfrac{BH}{BA}\)
=>\(BH^2=BK\cdot BA\left(1\right)\)
Xét ΔBIH vuông tại I và ΔBHC vuông tại H có
\(\widehat{IBH}\) chung
Do đó: ΔBIH~ΔBHC
=>\(\dfrac{BI}{BH}=\dfrac{BH}{BC}\)
=>\(BH^2=BI\cdot BC\left(2\right)\)
Từ (1),(2) suy ra \(BK\cdot BA=BI\cdot BC\)
=>\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)
Xét ΔBKI vuông tại B và ΔBCA vuông tại B có
\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)
Do đó: ΔBKI~ΔBCA
e: ΔBCA vuông tại B
mà BM là đường trung tuyến
nên MB=MC
=>ΔMBC cân tại M
\(\widehat{NIB}+\widehat{NBI}=\widehat{MCB}+\widehat{MAB}=90^0\)
=>BM\(\perp\)IK tại N
ta có: \(BK\cdot BA=BH^2\)
=>\(BK\cdot15=12^2=144\)
=>BK=144/15=9,6(cm)
\(BI\cdot BC=BH^2\)
=>\(BI\cdot20=12^2=144\)
=>BI=7,2(cm)
Xét tứ giác BKHI có \(\widehat{BKH}=\widehat{BIH}=\widehat{KBI}=90^0\)
nên BKHI là hình chữ nhật
=>KI=BH=12(cm)
Xét ΔBIK vuông tại B có BN là đường cao
nên \(\left\{{}\begin{matrix}BN\cdot IK=BK\cdot BI\\KN\cdot KI=KB^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BN\cdot12=7,2\cdot9,6\\KN\cdot12=9,6^2\end{matrix}\right.\)
=>BN=5,76(cm); KN=7,68(cm)
ΔBKN vuông tại N
=>\(S_{BNK}=\dfrac{1}{2}\cdot NB\cdot NK=\dfrac{1}{2}\cdot5,76\cdot7,68=22,1184\left(cm^2\right)\)