Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
AB,BC,AC tỉ lệ với 4,7,5 ⇔AB4=BC7=CA5(∗)
a) Sử dụng công thức đường phân giác kết hợp với (∗) ta có:
MCBM=ACAB=54
⇒MCBM+MC=54+5⇔MCBC=59
⇒MC=59BC=59.18=10 (cm)
b) Sử dụng công thức đường phân giác kết hợp với (∗) ta có:
NCNA=BCAB=74⇔NC7=NA4
Áp dụng tính chất dãy tỉ số bằng nhau:
NC+NA7+4=NC7=NA4=NC−NA7−4
⇔AC11=33=1⇒AC=11 (cm)
c)
Vì AO là phân giác góc PAC, BO là phân giác góc PBC nên áp dụng công thức đường phân giác:
OPOC=APAC=BPBC
AD tính chất dãy tỉ số bằng nhau:
OPOC=APAC=BPBC=AP+BPAC+BC=ABAC+BC
Theo (∗)⇒AC=54AB;BC=74AB
OPOC=ABAC+BC=AB54AB+74AB=AB3AB=13
d) Áp dụng công thức đường phân giác:
{MBMC=ABACNCNA=BCABPAPB=ACBC⇒MBMC.NCNA.PAPB=ABAC.BCAB.ACBC=1
(đpcm)
Chứng minh 1AM+1BN+1CP>1AB+1BC+1AC
Ta có:
SABM+SAMC=SABC
⇔MH.AB2+MK.AC2=CL.AB2
⇔AB.sinA2.AM+sinA2.AM.AC=sinA.AC.AB
⇔AM=sinA.AB.ACsinA2.AB+sinA2.AC=2sinA2cosA2.AB.ACsinA2.AB+sinA2.AC
⇔AM=2cosA2.AB.ACAB+AC
⇔1AM=AB+AC2AB.ACcosA2=12cosA2(1AB+1AC)
Tương tự: 1BN=12cosB2(1BA+1BC)
1CP=12cosC2(1CB+1CA)
Cộng theo vế:
1AM+1BN+1CP=12cosA2(1AB+1AC)+12cosB2(1BA+1BC)+12cosC2(1CA+1CB)
>12(1AB+1AC)+12(1BC+1AC)+12(1CB+1CA) (do cosα≤1 nhưng dấu bằng không xảy ra dokhông thể xảy ra đồng thời TH cosA2=cosB2=cosC2=1 )
⇔1AM+1BN+1CP>1AB+1BC+1CA
Ta có đpcm.
a) 2x(x-5)=5(x-5)
<=> 2x(x-5)-5(x-5)=0
<=> (x-5) (2x-5)=0
<=> \(\orbr{\begin{cases}x-5=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{2}\end{cases}}}\)
b) x2-x-6=0
<=> x2-3x+2x-6=0
<=> x(x-3)+2(x-3)=0
<=> (x+2)(x-3)=0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)
c) (x-1)(x2+5x-2)-x3+1=0
<=> (x-1)(x2+5x-2)-(x3-1)=0
<=> (x-1)(x2+5x-2)-(x-1)(x2+x+1)=0
<=> (x-1)(x2+5x-2-x2-x-1)=0
<=> (x-1)(4x-3)=0
<=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{4}\end{cases}}}\)
d) e) Bạn viết lại đề được không ạ?
Sửa đề : \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2^2}{4x^2-2x}\)
\(=\frac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\frac{3x-4}{2x\left(2x-1\right)}\)
\(=\frac{2x-1-6x+3x+6x^2-4x+3x-4}{2x\left(2x-1\right)}\)
\(=\frac{-2x+6x^2-5}{2x\left(2x-1\right)}\)
Thay x = 1/234 vào tính là ra giá trị biểu thức nhé !!!
Lời giải:
a.
Đơn thức:
$\frac{4}{5}x$: hệ số $\frac{4}{5}$, phần biến $x$
$(\sqrt{2}-1)xy$: hệ số $\sqrt{2}-1$, phần biến $xy$
$-3xy^2$: hệ số $-3$, phần biến $xy^2$
$\frac{1}{2}x^2y$: hệ số $\frac{1}{2}$, phần biến $x^2y$
$\frac{1}{x}y^3$: hệ số $1$, phần biến $\frac{1}{x}y^3$
$\frac{-3}{2}x^2y$: hệ số $\frac{-3}{2}$, phần biến $x^2y$
Các biểu thức còn lại không phải đơn thức.
c.
Gọi đa thức là $A(x)$
$A(x)=\frac{4}{5}x+(\sqrt{2}-1)xy-3xy^2+\frac{1}{2}x^2y+\frac{1}{x}y^3+\frac{-3}{2}x^2y$
$=\frac{4}{5}x+(\sqrt{2}-1)xy-3xy^2-x^2y+\frac{1}{x}y^3$
Bậc: $3$