\(\sqrt{sin^4x+6cos^2x+3cos^4x}+\sqrt{cos^4x+6sin^2x+3sin^4x}\)

chứng minh biểu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 12 2021

\(P=\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2cos^2x+1+2sin^2x+1\)

\(=2\left(sin^2x+cos^2x\right)+2=4\)

8 tháng 12 2021

https://hoc24.vn/cau-hoi/.3550407460796 cíu em với ah :(((

NV
30 tháng 10 2019

\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)

\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)

\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)

\(=sin^2x+cos^2x+2=3\)

b/

\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)

\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)

\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)

\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)

\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)

\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)

\(=-2+3=1\)

NV
9 tháng 6 2020

\(B=cos^2x.cot^2x+cos^2x-cot^2x+2\left(sin^2x+cos^2x\right)\)

\(=cos^2x\left(cot^2x+1\right)-cot^2x+2\)

\(=\frac{cos^2x}{sin^2x}-cot^2x+1=cot^2x-cot^2x+1=1\)

\(M=cos^4x-sin^4x+cos^4x+sin^2x.cos^2x+3sin^2x\)

\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(=2\left(sin^2x+cos^2x\right)=2\)

NV
3 tháng 3 2019

Giả sử các biểu thức đều có nghĩa

\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)

\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)

\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)

\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)

b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)

\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)

c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)

\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)

NV
26 tháng 4 2019

\(\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)

\(=\sqrt{sin^4x-4sin^2x+4}+\sqrt{cos^4x-4cos^2x+4}\)

\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)

\(=2-sin^2x+2-cos^2x\)

\(=4-\left(sin^2x+cos^2x\right)=3\)

18 tháng 6 2019

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

NV
4 tháng 11 2019

\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)

\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)

\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)

\(=-cot^2x.sin^2x+cos^2x+2\)

\(=-cos^2x+cos^2x+2=2\)

\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)

\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)

\(=\left(sin^2x+cos^2x\right)^4+1\)

\(=1^4+1=2\)

AH
Akai Haruma
Giáo viên
28 tháng 11 2019

\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)

là giá trị không phụ thuộc vào biến (đpcm)

-----------------------

\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)

\(=-\sin ^2x+\sin ^2x=0\)

là giá trị không phụ thuộc vào biến (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 11 2019

\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)

\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)

\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)

\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)

là giá trị không phụ thuộc vào biến $x$

--------------------

\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)

\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)

\(=1+\frac{2\sin ^2x}{\cos ^4x}\)

Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.

NV
9 tháng 6 2020

\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)

\(=\sqrt{4-4sin^2x+sin^4x}+\sqrt{4-4cos^2x+cos^4x}\)

\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)

\(=2-sin^2x+2-cos^2x=4-\left(sin^2x+cos^2x\right)\)

\(=3\)