Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\dfrac{2}{\sqrt{3}-1}\) - \(\dfrac{2}{\sqrt{3}+1}\) = \(\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
= \(\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\) = \(\dfrac{4}{2}\) = 2
b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}\) - \(\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)
= \(\dfrac{5\left(2\sqrt{5}-3\sqrt{2}\right)-5\left(2\sqrt{5}+3\sqrt{2}\right)}{12\left(2\sqrt{5}+3\sqrt{2}\right)\left(2\sqrt{5}-3\sqrt{2}\right)}\)
= \(\dfrac{10\sqrt{5}-15\sqrt{2}-10\sqrt{5}-15\sqrt{2}}{12\left(20-18\right)}\)
= \(\dfrac{-30\sqrt{2}}{24}\) = \(\dfrac{-15\sqrt{2}}{12}\) = \(\dfrac{-5\sqrt{2}}{4}\)
c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) +\(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\) = \(\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)
= \(\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\) = \(\dfrac{60}{20}\) = 3
d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)
= \(\dfrac{\sqrt{3}}{\sqrt{2}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
= \(\dfrac{\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}}{2-1}\) = \(2\sqrt{3}\)
a. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
= \(\sqrt{3-2\sqrt{15}+5}-\sqrt{3+2\sqrt{15}+5}\)
= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)
= \(\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}\)
= \(-2\sqrt{3}\)
b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
= \(\dfrac{\left(\sqrt{15}-\sqrt{5}\right).\left(\sqrt{3}+1\right)}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(2\sqrt{5}+4\right)}{4}\)
=\(\dfrac{\sqrt{45}+\sqrt{15}-\sqrt{15}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).2\left(\sqrt{5}+2\right)}{4}\)
= \(\dfrac{3\sqrt{5}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(\sqrt{5}+2\right)}{2}\)
= \(\dfrac{2\sqrt{5}}{2}+\dfrac{5\sqrt{5}+10-10-4\sqrt{5}}{2}\)
= \(\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
= \(\dfrac{3\sqrt{5}}{2}\)
c. \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}\right):\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
= \(\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}\right)}.\left(\sqrt{2}+1\right)^2\)
= \(\dfrac{2\sqrt{5}}{3}.\left(2+2\sqrt{2}+1\right)\)
= \(\dfrac{2\sqrt{5}}{3}.\left(3+2\sqrt{2}\right)\)
= \(\dfrac{6\sqrt{5}+4\sqrt{10}}{3}\)
d. \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-3\left(\sqrt{3}+2\right)+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(-2\sqrt{3}-5+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{-4\sqrt{3}-10+15+5\sqrt{3}}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{\sqrt{3}+5}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{1}{2}\)
Nếu đúng cho 1 like nhé!
2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)
4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)
1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)
3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{5}-2-3-\sqrt{5}=-5\)
4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)
5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)
6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)
8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
= \(-\sqrt{5}+15\sqrt{2}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
= \(2.7-2\sqrt{21}+7+2\sqrt{21}=14+7=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{6}.\sqrt{5}+5-2\sqrt{30}\)
= \(11+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
= \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
= \(4-4\sqrt{2}-12\sqrt{2}+64\sqrt{2}=4+48\sqrt{2}\)
Bài này dễ ẹc ( đâu có khó đâu :)) )
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=\sqrt{2^2.5}-\sqrt{3^2.5}+3\sqrt{3^2.2}+\sqrt{6^2.2}\)
\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=\left(2-3\right)\sqrt{5}+\left(9+6\right)\sqrt{2}\)
\(=15\sqrt{2}-\sqrt{5}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
\(=\sqrt{2^2.7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+\sqrt{2^2.21}\)
\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)
\(=14+7+\left(2-2\right)\sqrt{21}=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
\(=6+2\sqrt{30}+5-\sqrt{2^2.30}\)
\(=6+5+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{2^2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{10^2.2}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)
Hok tốt
a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)
c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)
e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)
b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)
c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)
d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)
f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+2\sqrt{12}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+4\sqrt{3}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(8+4\sqrt{3}\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}\)
\(=\sqrt{\left(4-3\right)\cdot4}\)
\(=\sqrt{1\cdot4}\)
\(=\sqrt{4}\)
\(=2\)
b) \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(5\sqrt{2}-7\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-5\sqrt{2}+7\)
\(=0+14\)
\(=14\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
dài quá ==' cả d, e, f nữa ==' có j rảnh lm cho nhé :D
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)
b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)
d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)
\(a.\sqrt{72}-5\sqrt{2}+3\sqrt{12}\\ =6\sqrt{2}-5\sqrt{2}+6\sqrt{3}\\ =\sqrt{2}+6\sqrt{3}\\ b.6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\\ =3\sqrt{2}-\sqrt{2}-5\sqrt{2}\\ =-3\sqrt{2}\\ c.\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\\ =2+1+\sqrt{3}-\sqrt{3}\\ =3\\ d.\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\\ =4+3+4\\ =11\)