K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

help mình với ad ưi :/

8 tháng 11 2018

\(a,\left(2x+3\right)\left(2x-3\right)-\left(2x+1\right)^2\)

\(=4x^2-9-4x^2-4x-1\)

\(=-4x-10\)

\(=-2\left(2x+5\right)\)

b,Tương tự

5 tháng 10 2020

a) ( x - 1 )( 2x + 1 ) + 3( x - 1 )( x + 2 )( 2x + 1 )

= ( x - 1 )( 2x + 1 )[ 1 + 3( x + 2 ) ]

= ( x - 1 )( 2x + 1 )( 1 + 3x + 6 )

= ( x - 1 )( 2x + 1 )( 3x + 7 )

b) ( 6x + 3 ) - ( 2x - 5 )( 2x + 1 )

= 3( 2x + 1 ) - ( 2x - 5 )( 2x + 1 )

= ( 2x + 1 )[ 3 - ( 2x - 5 ) ]

= ( 2x + 1 )( 3 - 2x + 5 )

= ( 2x + 1 )( 8 - 2x )

= 2( 2x + 1 )( 4 - x )

c) ( x - 5 )2 + ( x + 5 )( x - 5 ) - ( 5 - x )( 2x + 1 )

= ( x - 5 )2 + ( x + 5 )( x - 5 ) + ( x - 5 )( 2x + 1 )

= ( x - 5 )[ ( x - 5 ) + ( x + 5 ) + ( 2x + 1 ) ]

= ( x - 5 )( x - 5 + x + 5 + 2x + 1 )

= ( x - 5 )( 4x + 1 )

d) ( 3x - 2 )( 4x - 3 ) - ( 2 - 3x )( x - 1 ) - 2( 3x - 2 )( x + 1 )

= ( 3x - 2 )( 4x - 3 ) + ( 3x - 2 )( x - 1 ) - 2( 3x - 2 )( x + 1 )

= ( 3x - 2 )[ ( 4x - 3 ) + ( x - 1 ) - 2( x + 1 ) ]

= ( 3x - 2 )( 4x - 3 + x - 1 - 2x - 2 )

= ( 3x - 2 )( 3x - 6 )

= 3( 3x - 2 )( x - 2 )

10 tháng 9 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

1 tháng 10 2020

a)(ab−1)2+(a+b)2

=a2b2−2ab+1+a2+2ab+b2

=a2b2+1+a2+b2=a2(b2+1)+(b2+1) = (a2+1)(b2+1)

c)x3−4x2+12x−27

=x3−27+(−4x2+12x)

=(x−3)(x2+3x+9)−4x(x−3)

=(x−3)(x2+3x+9−4x)

=(x−3)(x2−x+9)

b)x3+2x2+2x+1

=x3+2x2+x+x+1

=x(x2+2x+1)+(x+1)

=x(x+1)2+(x+1)

=(x+1)(x(x+1)+1)

=(x+1)(x2+x+1)

d)x4−2x3+2x−1

=x4−2x3+x2−x2+2x−1

=x2(x2−2x+1)−(x2−2x+1)

=(x2−2x+1)(x2−1)

=(x−1)2(x−1)(x+1)

=(x−1)3(x+1)

e)x4+2x3+2x2+2x+1

=x4+2x3+x2+x2+2x+1

=x2(x2+2x+1)+(x2+2x+1)

=(x2+2x+1)(x2+1)

=(x+1)2(x2+1)

10 tháng 7 2019

1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)

\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)

Vạy ...

phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

10 tháng 7 2019

\((4x-1)^2-(5-3x)^2=0\)

\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)

\(\Leftrightarrow(x-6)(x+6)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

Vậy : ...

14 tháng 10 2020

a, \(x^3-2x^2+3x-6=x\left(x^2+3\right)-2\left(x^2+3\right)=\left(x-2\right)\left(x^2+3\right)\)

b, \(x^2+2x+1-4y^2=\left(x+1\right)^2-\left(2y\right)^2=\left(x+1-2y\right)\left(x+1+2y\right)\)

14 tháng 10 2020

\(\left(-2x\right)\left(3x+1\right)+\left(x-2\right)\left(2x+1\right)=-6x^2-2x+2x^2+x-4x-2\)

\(=-4x^2-5x-2\)

Sửa 2x + 1 => 3x + 1 có vẻ sẽ ok hơn nhé !